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Abstract

A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied.

It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the

peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit

and mean hematocrit have been derived and the effects of various relevant parameters on these flow

variables have been studied. It is found that the effective viscosity, core hematrocit and mean

hematrocit for Newtonian fluid is less than that for Bingham fluid, power-law fluid and Herschel-

Bulkley fluid. It has been observed that the effective viscosity and mean hematocrit increase with yield

stress, power-law index, hematocrit and tube radius but the core hematocrit decreases with hematocrit

and tube radius. Further, it is also noticed that the flow exhibits the anomalous Fahraeus-Lindqvist

effect.

Key Words: Effective Viscosity, Herschel-Bulkley Fluid, Hematocrit, Fahraeus-Lindqvist Effect,

Yield Stress

1. Introduction

The word microcirculation represents the flow of

blood through small blood vessels such as arterioles, ca-

pillaries and venules. It consists of the complex network

of blood vessels whose diameter ranges from approxi-

mately 4�100 �m. Further, the flow of blood through

smaller diameter blood vessels is accompanied by anom-

alous effects. In particular, it has been observed that the

apparent viscosity of blood increases with tube diame-

ter and this is known as Fahraeus-Lindqvist effect. The

hematocrit of blood within the tube is lower than that

in the feed reservoir and this is called Fahraeus effect.

These effects have been confirmed by several investiga-

tors.

It has been pointed out that for flow in smaller blood

vessels at lower shear rates, the yield stress for the blood

is non-zero and the blood behaves like a non-Newtonian

fluid [1,2]. Haynes [3] and Bugliarello and Sevilla [4]

have considered a two-fluid model with both fluids as

Newtonian fluids and with different viscosities. Sharan

and Popel [5] and Srivastava [6] have reported that for

blood flowing through narrow tubes, there is a peripheral

layer of plasma and a core region of suspension of all

erythrocytes. Haldar and Andersson [7] and Chaturani

and Samy [8] have studied a two-layered blood flow

model in which the core region is occupied by a Casson

type fluid and peripheral region by Newtonian fluid.

Chaturani and Upadhya [9,10] analyzed two-fluid models

assuming Newtonian fluid in peripheral region and polar

fluids in core region. Shukla et al. [11] have studied the

two-layered models of blood flow through stenosed ar-

teries.

Though Newtonian and several non-Newtonian mo-

dels have been used to study the motion of blood, it is

realized [12] that Herschel-Bulkley model describes the

behaviour of blood very closely. Herschel-Bulkley fluids

are a class of non-Newtonian fluids that require a finite
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stress, known as yield stress, in order to deform. There-

fore, these materials behave like rigid solids when the

local shear is below the yield stress. Once the yield stress

is exceeded, the material flows with a non-linear stress-

strain relationship either as a shear-thickening fluid, or

a shear-thinning one. Few examples of fluids behaving

in this manner include paints, food products, plastics,

slurries, pharmaceutical products etc.

Maruthi Prasad and Radhakrishnamacharya [13] di-

scussed the steady flow of Herschel-Bulkely fluid in an

inclined tube of non-uniform cross-section with multiple

stenoses. Vajravelu et al. [14] studied a mathematical

model for a Herschel-Bulkley fluid flow in an elastic

tube. Sankar and Usil Lee [15] analyzed the two-fluid

Herschel-Bulkey model for flow of blood in catheterized

arteries. Vajravelu et al. [16] considered peristaltic trans-

port of Herschel-Bulkley fluid in an inclined tube.

Recently, Santhosh and Radhakrishnamacharya [17]

studied a two-fluid model for the flow of Jeffrey fluid

through a porous medium in tubes of small diameters. In

the present paper, a two-layered model is considered, in

which the peripheral region consists of Newtonian fluid

and the core region is represented by a Herschel-Bulkley

fluid. Following the analysis of Chaturani and Upadhya

[9] and Vajravelu et al. [14], the linearised equations of

motion have been solved and analytical solution has

been obtained. The analytical expressions for velocity,

flow rate, effective viscosity, core hematocrit and mean

hematocrit are obtained. The results are depicted graphi-

cally and the effects of various relevant parameters have

been studied.

2. Formulation of the Problem

We consider the steady, laminar and axisymmetric

flow of Herschel-Bulkley fluid through a narrow tube of

uniform cross-section with constant radius ‘a’. It is as-

sumed that the flow in the tube is represented by a two-

layered model in which peripheral region of thickness �

(a � b = �) is occupied by Newtonian fluid and the other

is a central core region of radius ‘b’, which is represented

by Herschel-Bulkley fluid (Figure 1). Let �p and �c be

the viscosities of the fluid in peripheral region and core

region, respectively. The cylindrical coordinates (r, z)

are chosen, where r and z denote the radial and axial co-

ordinates and the z axis is taken along the axis of the

tube.

The equations governing the flow of an incompres-

sible Herschel-Bulkley fluid for the present problem

(Maruthi Prasad and Radhakrishnamacharya [13] and

Vajravelu et al. [14]) are given by:

(1)

where �rz, the shear stress of the Herschel-Bulkley fluid,

is given by

(2)

(3)

Here u is the axial velocity, p is the pressure, �0 is the

yield stress, � is the consistency factor and n (� 1) is the

flow behavior index and they represent the non-Newto-

nian effects.

The region between r = 0 and r = r0 is called plug

core region and in this region, �rz � �0. In the region be-

tween r = r0 and r = b, we have �rz � �0.

Let u = v1(r) be the velocity in the peripheral region

and v2(r) in the core region. Then the equations govern-

ing the flow of fluid are [7,14]:

Peripheral region (Newtonian fluid):

(4)
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Figure 1. Geometry of the problem.



Core region (Herschel-Bulkley fluid):

(5)

where P = �
�

�

p

z
is the constant pressure gradient.

The boundary conditions for the problem are:

(6a)

(6b)

(6c)

Condition (6a) is the classical no-slip boundary condi-

tion for the velocity, (6b) denotes the continuity of ve-

locities and stresses at the interface and (6c) is the regu-

larity condition.

Solving equations (4) and (5) under the conditions

(6), we get

(7)

(8)

The expression for the fluid velocity in the plug flow re-

gion, vp, is obtained by substituting r = r0 in Eq. (8) as

(9)

The flow flux in the peripheral region and core region,

denoted by Qp and Qc, are given by

(10)

and

(11)

Substituting for v1, v2 and vp from (7), (8) and (9) into

(10) and (11), we get

(12)

and

(13)

where

(14)

Here d is the non-dimensional core radius.

Thus, the flow flux through the tube is given by

Q = Qp + Qc (15)

Using (12) and (13) in (15), we get

(16)

Comparing (16) with flow flux for Poiseuille’s flow,

we get the effective viscosity as

(17)

Here d is the non-dimensional core radius.

In the case when there is no yield stress, that is �0 = 0,

the Herschel-Bulkley model reduces to the power-law

model. Thus, substituting �0 = 0 i.e., �p = 0, we obtain the
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value of effective viscosity for the power-law model as

(18)

Further, if we put k = 1 in (18), we obtain results for

Newtonian fluids, i.e.,

(19)

This is same as the expression obtained by Buglierello

and Sevilla [4].

2.1 Mean Hematocrit for Cell-free Wall Layer

The percentage volume of red blood cells is called

the hematocrit and is approximately 40�45% for adult

human beings.

The core hematocrit Hc is related to the hematocrit

H0 of blood leaving or entering the tube by

H0Q = HcQc (20)

Substituting for Qc and Q from (13) and (15) in (20),

we get (after simplification),

(21)

where H c is the normalized core hematocrit.

The mean hematocrit within the tube Hm is related to

the core hematocrit Hc by

(22)

On simplification, we get

(23)

where H m is the normalized mean hematocrit.

Substituting for H c from equation (21) in (23), we

get

(24)

3. Results and Discussion

The effects of yield stress, power-law index and he-

matocrit on effective viscosity �eff, core hematocrit H c

and mean hematocrit H m , have been numerically com-

puted by using Mathematica software and the results are

graphically presented in Figures 2�13. In the present

analysis, the following values are chosen: �p = 1.2 cen-

tipoise (cp), �c = 4.0 cp and d = 1 � (�/a) in which � =

3.12 � for 40% hematocrit, 3.60 � for 30% and 4.67 �

for 20% (Haynes [3], Chaturani and Upadhya [9]).

The effects of various parameters on effective vis-

cosity (�eff) are shown in Figures 2�5. It can be seen that

the effective viscosity (�eff) for Newtonian fluid is less

than that for Bingham fluid [n = 1, �p 	 0], power-law

fluid [n 	 1, �p = 0] and Herschel-Bulkley fluid [n 	 1, �p

	 1] (Figure 2). Figures 3�5 show that the effective vis-

cosity (�eff) increases with the yield stress (�p), power-

law index (n) and hematocrit (H0). The values of effec-
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Figure 2. Variation of �eff with tube radius ‘a’ for different
fluids (Newtonian fluid [n = 1.0, �p = 0], Bingham
fluid [n = 1, �p 	 0 (= 0.2)], power-law fluid [n 	 1
(= 1.1), �p = 0], Herschel-Bulkley fluid [n 	 1 (=
1.1), �p 	 1 (= 0.2)] and H0 = 40%).



tive viscosity computed from the present model are in

good agreement, within the acceptable range, with the

corresponding values of the effective viscosity obtained

in the theoretical models of Haynes [3], Sharan and Popel

[5] and Chaturani and Upadhya [9]. Further, for given

values of yield stress (�p), power-law index (n) and he-

matocrit (H0) the effective viscosity (�eff) increases with

tube radius (a) (Figures 2�5), i.e., the flow exhibits Fa-

hraeus-Lindqvist Effect.

Figures 6�13 display the effects of various parame-

ters on the core hematrocit (H c ) and mean hematocrit

( )H m . It is noticed that the core hematrocit (H c ) and
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Figure 5. Effect of hematocrit (H0) on �eff (n = 1.05 and �p =
0.2).

Figure 4. Effect of power-law index (n) on �eff (H0 = 40% and
�p = 0.2).

Figure 7. Effect of yield-stress (�p) on Hc (H0 = 40% and n =
1.05).

Figure 6. Effect of different fluids on Hc with tube radius ‘a’
(Newtonian fluid [n = 1.0, �p = 0], Bingham fluid [n
= 1, �p 	 0 (= 0.2)], power-law fluid [n 	 1 (= 1.1), �p

= 0], Herschel-Bulkley fluid [n 	 1 (= 1.1), �p 	 1 (=
0.2)] and H0 = 40%).

Figure 3. Effect of yield stress (�p) on �eff (H0 = 40% and n =
1.05).



mean hematrocit ( )H m for Newtonian fluid is less than

that all other fluids (Figures 6 and 10). Also, the core

hematocrit (H c ) increases with yield stress (�p) (Figure

7) and power-law index (n) (Figure 8) but decreases with

hematocrit (H0) (Figure 9). It is seen that for given values

of yield stress (�p), power-law index (n) and hematocrit

(H0), the core hematocrit (H c ) decreases with tube radius

(a) (Figures 6�9). It can be observed that the mean he-

matrocit ( )H m increases with yield stress (�p) (Figure

11), power-law index (n) (Figure 12), hematocrit (H0)

(Figure 13) and tube radius (a) (Figures 10�13).

4. Conclusions

We have analyzed a two-fluid model for the steady

flow of Herschel-Bulkley fluid through tubes of small

diameters. With the assumption that there is Herschel-

Bulkley fluid in core region and Newtonian fluid in pe-

ripheral region, analytical expressions for effective vis-

cosity, core hematocrit and mean hematocrit are obtained.

The effects of yield stress, power-law index and hema-

tocrit on effective viscosity, core hematocrit and mean

hematocrit have been studied. It is found that effective

viscosity, core hematocrit and mean hematocrit of New-

tonian fluid is less than that for Bingham fluid, power-

law fluid and Herschel-Bulkley fluid. The effective vis-

cosity increases with yield stress, power-law index, he-
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Figure 8. Effect of power-law index (n) on Hc (H0 = 40% and
�p = 0.2).

Figure 9. Effect of hematocrit (H0) on Hc (n =1.05 and �p =
0.2).

Figure 10. Effect of different fluids on Hm with tube radius ‘a’
(Newtonian fluid [n = 1.0, �p = 0], Bingham fluid [n
= 1, �p 	 0 (= 0.2)], power-law fluid [n 	 1 (= 1.1),
�p = 0], Herschel-Bulkley fluid [n 	 1 (= 1.1), �p 	 1
(= 0.2)] and H0 = 40%).

Figure 11. Effect of yield stress (�p) on Hm (H0 = 40% and n =
1.05).



matocrit and tube radius. Hence, the flow exhibits the

anomalous Fahraeus-Lindqvist effect.
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