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Now-a-days, a challenging task in the medical field is the diagnosis of skin illness considering numerous
characteristics such as color, size, and the lesion region. Dermoscopy is a technique that has been frequently
used to diagnose skin lesions. Researchers have recently demonstrated a keen interest in building an automated
diagnosis system, and a satisfying result can be achieved with a high degree of skill, as skin lesion classification
necessitates a great deal of knowledge and expertise. Automated skin lesion classification in dermoscopy
images is an essential way to improve diagnostic performance. This paper presents the power of convolutional
neural networks in classifying the skin lesions into two different categories, namely Granular Parakeratosis and
Paraneoplastic Pemphigus. The proposed method includes implementation of Support Vector Machine with
hinge loss and linear activation function for classification of lesions and this output is fed to the 10-fold cross
validation model, yielding an accuracy of 94%, sensitivity of 93%, and specificity of 91%. The proposed strategy
outperforms the SVM kernel Radial basis function (RBF), which was created specifically for binary classification
problems.
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1. Introduction

Granular parakeratosis is a disease characterised by thick-
ening of the outer layer of the skin, presence of ker-
atinocytes and retainment of keratohyalin dots in the horny
layer. It has the characteristics of histopathological findings
[1, 2].

Paraneoplastic pemphigus (PNP) is a newly recognized
autoimmune blistering disease associated with an underly-
ing malignancy. The diagnosis is based on clinical, histolog-
ical, and immune-fluorescent findings. It most commonly
affects people between the ages of 45 and 70, but it can also
affect youngsters [3].

‘Early diagnosis and treatment of skin diseases increases
the rate of recovery’. However, the traditional procedures

that depend on manual examination face several difficul-
ties due to the high similarity of lesions. In some cases,
samples may cause complications in the spread of the dis-
ease. The conjunction of contemporary imaging techniques
and computer vision algorithms provides a better result
related to accuracy and processing speed. Generally, a
computer-aided diagnostic system consists of four steps,
including pre-processing, segmentation, feature extraction,
and, finally, lesion classification.

As seen in the dermatology area for skin lesion clas-
sification, particularly for differentiating melanoma and
nevus, digital image processing techniques are gaining rel-
evance in various computer tools that assist in diagnostic
conclusion [4]. The techniques used in such tasks span
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from Deep Learning, which determines the sorts of fea-
tures to be used for classification automatically, to more
traditional Machine Learning (ML) algorithms that require
hand-crafted features. The application of the deep learn-
ing algorithm has yielded impressive results [5]. Those
techniques, however, necessitate large, precisely annotated
datasets, which are rarely available.

Dermoscopy, a technique for removing the skin’s sur-
face reflection and examining the structures, is an impor-
tant tool for improving diagnostic performance and assist-
ing experts in determining whether a lesion is harmful or
harmless. To enhance the appearance of features like color,
this procedure uses a dermatoscope, which is a device that
includes a light source and an amplification lens.

Over the years, convolutional neural network (CNN)
has been considered as a tool for biomedical image classi-
fication. It works effectively in a variety of medical fields,
including histology and dermatology [6]. The rapid ex-
pansion of deep neural networks, such as CNN, allows
non-professionals to become acquainted with the sophisti-
cated tools and understand them.

In the early 1990s, computer-aided diagnosis (CAD) sys-
tems were developed for the detection of skin lesions. Since
then, various approaches have been published to handle
the challenge of lesion categorization. The majority of the
algorithms (e.g. [7]) employ a manual evaluation process
based on Nachbar et al.’s ABCD principle [8]. This rule
encompasses an asymmetry (A), border (B), color (C), and
differential structure (D). Alquran Hiam [9] introduced
the Support Vector Machine (SVM) with Principal compo-
nent analysis (PCA) approach, which correctly categorized
the retrieved lesion ROI with 92.1% accuracy. SVM [10]
is able to classify samples containing melanoma and non-
melanoma lesions and showed that accuracy goes up with
the larger number of samples.

Due to the following reasons, this research offers an
ensemble approach of SVM with hinge loss function and
10–fold cross validation for detecting and classifying gran-
ular parakeratosis and paraneoplastic pemphigus.

• Hinge loss is computationally effective and provides
better accuracy.

• Compared to log loss, hinge loss is easier and pro-
cesses faster.

• 10–fold cross validation improves the performance of
a machine learning model by reducing computation
time and bias.

• The variance of the result is reduced as k increases.

• Cross-validation can make predictions about each of
the samples.

The paper consists of the following sections. Section
2 includes a review about the classification of skin lesion.
Further, section 3 focuses on methodology and section 4
produces the results obtained after the implementation and
finally, the paper is concluded.

2. Literature review

CAD tools for skin lesions are studied in many disciplines
and at various levels of the diagnostic system. Natale
Cascinelli [11] reported the first study on the automatic
classification of pigmented lesions. Following that, dif-
ferent methods for pre-processing, segmentation, feature
extraction, and classification were shown. The publications
on CAD systems for skin problems are reviewed below.

According to Pereira et al., improved segmentation ac-
curacy leads to better classification results. It improved the
classification of skin lesions into Nevus and Melanoma by
automating the process. Adding border-line characteris-
tics to automatic classification algorithms enhanced their
performance by more than 90%.

The work of [12] proposed an automatic method for
skin lesion classification that employs pre-trained deep
learning models and combines the features from several
layers or from several CNNs to yield a better classification
performance of 97.55%.

To categorize moles and melanoma, Rohan Gaonkar
used two classifiers: Radial Basis Function Network (RBFN)
and SVM in [13]. The accuracy of SVM and RBFN for the
K10 protocol was 87% and 91%, respectively. Specificity
and sensitivity for SVM were 82% and 92%, respectively,
for the K10 protocol, whereas specificity and sensitivity
for RBFN were 90% and 93%, respectively. As a result,
the technique maintains a balance between specificity and
sensitivity.

The work of [14] performed automatic lesion segmen-
tation using encoder-decoder architecture, MobileNetV3-
UNet that achieved high accuracy with a limited number of
resources. The approach was tested on three datasets: ISIC-
2017, ISIC-2018, and PH2, yielding dice coefficient and
Jaccard index values of 87.74%, 80.25%, 91.01%, 83.44%,
and 95.18%, 91.08%, respectively, for ISIC-2017, ISIC-2018,
and PH2.

A deep neural network framework was proposed in [15]
for classifying the lesion images into multiple classes. This
framework applies balanced multi-class accuracy (BMA), a
measure available in multi-class classification problems, to
the ISIC 2018 dataset and obtained an accuracy of 60%.
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The work of [16] proposes 2D super-pixels and the deep
learning system to improve classification accuracy. The
features extracted from the PH2, ISBI 2016, and HAM1000
datasets are optimized using the grasshopper optimiza-
tion algorithm and then classified using the Naive Bayes
classifier. This hierarchical framework achieved an accu-
racy of 95.40%, 91.1%, and 85.50%, on the three datasets,
respectively.

The work of [17] Ghasem Shakourian Ghalejoogh (2020)
proposed a hybrid model consisting of Structure Based on
Stacking (SBS) and Hierarchical Structure Based on Stack-
ing (HSBS) that were implemented on PH2 and Ganster
datasets and found that HSBS method classified lesions
as benign, dysplastic, and melanoma in a better manner
compared to the SBS. For the PH2 dataset, an accuracy of
98.5% is obtained, and for the Ganster Dataset, it is 97.78%.

Table 1 summarizes all of the previous studies that are
connected. In reviewed research, most of the studies con-
centrate on differentiating melanoma from non-melanoma.
Granular parakeratosis and paraneoplastic pemphigus are
the emphasis of the suggested technique.

The algorithms utilized by different authors in classi-
fying skin lesions have not been demonstrated to be ex-
tremely accurate and effective, according to literature. This
made us step into an efficient ensemble technique, SVM-
hinge loss and 10-fold cross validation. This method is able
to train, test, and classify the dataset of granular paraker-
atosis and paraneoplastic pemphigus images and will be
very helpful in the diagnosis of these lesions efficiently.

3. Methodology

3.1. Our contribution

The contributions of proposed work are summarized as
follows.

• A dense layer with an L2 regularizer and linear acti-
vation function is chosen as the last layer of the CNN
model, leading to the implementation of the SVM clas-
sifier.

• The loss function plays a vital role in the optimization
process, and a proper selection of the loss function
helps improve the training process. Here, Hinge loss
that eases the process of training with small datasets
is adapted. Thus, a method to automatically classify
the lesions of granular parakeratosis is proposed.

• The output of the proposed SVM classifier is fed to 10-
fold cross validation, thereby increasing the accuracy.

Fig. 1. Proposed system architecture

3.2. System architecture

The architecture of the proposed system is shown in Fig. 1.
Granular parakeratosis and paraneoplastic pemphigus le-
sion images are included in the dataset, and the proposed
system is used to classify these lesions. To train and evalu-
ate the algorithms, a dataset of 1505 dermoscopic images
was used. Table 2 contains a description of the dataset. To
improve the system’s accuracy, the input dataset is pro-
vided to a linear SVM with hinge loss for identifying the
lesion, and the classifier output is then ensembled with
10 fold cross validation. The system is evaluated using
test dataset and graphs are generated for the results ob-
tained. The system further classifies the type of skin lesion
as Granular Parakeratosis or Paraneoplastic Pemphigus.
The proposed model requires lesion color images of size
224×224.

3.3. Svm with hinge loss function

SVM is a supervised learning procedure developed by Vap-
nik and is mainly used for classification problems [18].
SVM tries to find the best separator in differentiating two
different classes [19]. An advantage of SVM is that it pro-
vides a framework for classifying the data through a suit-
able kernel selection [20]. Thus, the support vector machine
serves as a binary classifier [21].

A linear kernel SVM is used to classify our dataset. The
main purpose for opting the linear kernel is its speed and
accuracy in classifying the binary problems. The proposed
SVM classifier with hinge loss and linear activation func-
tion consists of the following layers in architecture:

1. Convolution
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Table 1. Literature Survey

Reference Method Dataset Result

[4]
SVM and Feed forward MED-NODE dataset and

Accuracy above 90%Neural Network (FNN) the Dermofit dataset
[12] SVM Classifiers ISIC 2017 Area under the curve (AUC) - 97.55%

[15] Deep Neural Network ISIC 2018 dataset
Balanced multi-class accuracy
(BMA) was obtained as 60%

[16]
Super Pixels And Deep PH2, ISBI 2016, and

Accuracy of 95.40%, 91.1%, and 85.50%Learning Framework HAM1000 dataset
[17] HSBS structure PH2 and Ganster datasets Accuracy PH2 - 98.5%, Ganster - 97.78%

Table 2. A detailed dataset

Granular Paraneoplastic
Parakeratosis Pemphigus

Training set 1080 71
Test set 425 28

Total 1505 99

The first and foremost layer in a neural network is
convolution. It accepts images and filters as inputs
and extracts the features from an input image, leading
to a feature map.

( f ∗ g)(t) def
=

∫ ∞

−∞
f (t − τ)g(τ)dτ (1)

The rectifier function, ReLu increases the non-linearity
in the network. Because of its computational efficiency,
ReLu was chosen over sigmoid.

2. Pooling

The pooling layer highlights the elements of the fea-
ture map that originated from the convolution layer,
lowering the number of parameters and improving
the model’s stability.

• Second convolutional layer

Convolutional layers do not work only on the
input data, but also on the output of other lay-
ers. This stacking of convolutional layers leads
to hierarchical decomposition of the input.

3. Flattening

After a feature map is pooled, it is converted to a 1-D
array and fed to the next layer by flattening it into a
column. The fully-connected layer is then connected
to the final classification model.

4. Full Connection

This is where the steps discussed earlier are merged,
thereby creating a convolutional neural network. The
main role of the fully connected layer is to combine
the features into a number of attributes that make the
CNN more capable of classifying images accurately.

5. Output Layer

To generate the final output in the form of a class,
a fully connected layer is applied to get an output
equal to the number of classes required. Convolution
layers give rise to 3D activation maps, but what output
is needed is to know whether a lesion belongs to a
granular parakeratosis or not. The output layer has
three parameters:

• Hinge loss function to compute the error in pre-
diction;

• L2 regularizer;

• Linear activation function;

The combination of these parameters leads to a simula-
tion of the SVM classifier. A detailed explanation of these
parameters is given below:

Hinge Loss

The hinge loss is a function that trains the classifiers,
mostly SVM classifier. The following equation gives
the formula for calculating the hinge loss:

l = max
(

0, 1 − yi
(

xi − b
))

(2)

Where yi and xi refer to the ith instance in the training
set and b refers to the bias term.

This formula can be re-written as:

l =
{

0 if y · (w · x) ≥ 1
1 − y · (w · x) otherwise.

}
(3)

Regularizers

During optimization, regularizers impose penalties on
parameters or activity of the layer. These penalties
are applied to the network’s loss function, which is
optimized. On a layer-by-layer basis, regularization
penalties are applied. There are three arguments in
these layers:

– kernel_regularizer: it applies a penalty to the
kernel of the layer.
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– bias_regularizer: this applies a penalty to the bias
of the layer.

– activity_regularizer: this one applies a penalty to
the output of the layer.

Regularization of neural networks is a technique for
reducing model overfitting. There are various types
of regularization. The tf.keras.regularizers module
includes two built-in regularizers: L1 class and L2
class.

The most commonly used form is L2 regularization. It
adds a term to the training algorithm’s error function
and this additional term penalizes large weight val-
ues. The two most frequent error functions in neural
network training are squared error and cross entropy
error. In L2 regularization, a proportion (called as
L2 regularization constant, and represented by the
lambda) of the sum of the squared weight values is
added to the base error.

The penalty for L2 regularization is calculated as fol-
lows:

loss = l2∗reduce_sum(square(x)) (4)

L2 regularization reduces overfitting by keeping the
weights and bias values minimal.

E =
1
2
∗ ∑ (tk − ok)

2 +
λ

2
∗ ∑ w2

i (5)

The math equation is given in the Eq. (5). ‘It is squared
error augmented with the L2 weight: one-half the sum
of the squared differences between the target values
and the computed output values, plus half a constant
lambda times the sum of the squared weight values’.

∆wjk =η ∗
[

xj ∗ (ok − tk) ∗ ok ∗ (1 − ok)
]

+
[
λ ∗ wjk

] (6)

The back-propagation algorithm adds a positive or
negative weight-delta to each weight iteratively dur-
ing training. ‘The weight-delta is a fraction (called the
learning rate and represented by the letter η) of the
weight gradient. The weight gradient is the calculus
derivative of the error function as given in Eq. (6)’.

Activation functions

These determine the neural network’s output. Asso-
ciated with neurons, this function decides whether
a neuron should be activated or not, depending on
whether its input is appropriate for predicting the
model.

Two types of Activation Functions:-

– Linear Activation Function

– Non-linear Activation Functions

A linear activation function takes the form:

A = cx

where c is the derivative with respect to x. It accepts
inputs, multiplies them by the weights, and creates an
output in proportion to the input.

3.4. 10-fold cross-validation

The SVM classifier performance relies on the parameters,
C (regularization) and the kernel parameters. These “hy-
perparameters” can be adapted to select the SVM model.
The most basic approach is CROSS-VALIDATION.

Cross-validation (CV) is a well-known method for fine-
tuning predictive model hyper-parameters. In 10-fold CV,
the input dataset S is partitioned into 10 subsets S1,. . . ,S10.
Each point in S is randomly assigned to one of the subsets,
so that they are of equal size.

(i.e., ⌊|S|/K⌋ ≤ |Si| ≤ ⌈|S|/K⌉)

‘Further, S\i = Uj=1,. . . ,K∧j ̸=iSi is defined as the union
of all data points except those in Si. For each i=1,. . . ,10, an
individual model is built by applying the algorithm to the
training data S\i. This model is then evaluated by means
of a cost function using the test data in Si. The average
of the K outcomes of the model is called cross-validation
performance and is used as a predictor of the performance
of the algorithm when applied to S’.

4. Results and analysis

4.1. Dataset description

The dataset is taken from [22, 23]. Initially, 224x224 pictures
are loaded and turned into numpy arrays using their RGB
values. To avoid overfitting, data augmentation technique
is applied that artificially creates a new training set from
an existing training set. Finally, the pictures are appended
to a training set and shuffled (a method of elastic transfor-
mation).

4.2. Experimental setup

Here, the parameters employed during the calculation of re-
sults are discussed. All simulations of the proposed frame-
work are implemented on a Windows 10 OS configured
with an Intel Core i5 processor and 8 GB of DDRAM. An
Anaconda IDE with spyder editor is utilized to implement
a program. The training epoch number is 10, and the batch
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Fig. 2. Training results for the classification of granular
parakeratosis and paraneoplastic pemphigus

size is 8. In the classification phase, a ratio of 75/25 train-
ing and testing images are employed and 10-fold cross-
validation is performed.

4.3. Evaluation metrics

The proposed model is evaluated using the confusion ma-
trix. It is a table that describes the performance of a classi-
fier on the test data in machine learning. The performance
of the proposed system is determined using accuracy, sen-
sitivity, and specificity. Sensitivity, specificity and accuracy
are described in terms of TP, TN, FN and FP.

Sensitivity = TP/(TP + FN)

Speci f icity = TN/(TN + FP)

Accuracy = (TN + TP)/(TN + TP + FN + FP)

Where FP → False Positive, FN → False Negative, TP →
True Positive, TN → True Negative

4.4. Analysis

The system initializes the SVM architecture and trains the
network by setting the epoch manually. This CNN frame-
work includes several convolution layers, filters, maxpool
layers, dropout layers, softmax layers, and an activation
function.

The dataset, consisting of 224x224 resolution images, is
first fed into the training stage. This training set is then split
into K (here K is chosen as 10) subsets, thereby training
the model on one partition and evaluating it on the other
partitions. Here, K represents the number of groups a given
dataset is to be split into. The overall performance of the
model is then taken as the average of k time’s performance.
The result of the model is improved with the application
of 10-fold cross validation. The proposed model training
results are shown in Fig. 2.

Fig. 3-(i) depicts the model’s accuracy on training and
validation sets. This suggests that our model is an excellent

Fig. 3. (i) Accuracy of the model on the training and
validation set, (ii) and (iii) Training and validation loss

obtained on the given dataset

predictor, considering all types of boundary cases. That
is, in training the dataset, the hyperparameters chosen are
very good and eventually resulted in a better prediction in
the validation dataset.

Fig. 3-(ii) and (iii) show the training and validation
losses obtained on the given dataset. Here we find the
validation loss is much better than the training one, which
indicates that the validation dataset is easier to predict than
the training dataset. An explanation could be the valida-
tion data is scarce but widely represented by the training
dataset, so the model performs extremely well on these few
examples.

Graphs in Fig. 3 indicate the performance of the SVM-
10 fold model on the given dataset. It clearly shows that
accuracy increased gradually and reached around 94%,
whereas loss values fell off against the iterations of the
network.

The dominance of the proposed SVM with hinge loss
function can be validated by conducting a comparative
study. A comparison is made with existing techniques such
as Joint Reverse Classification, ClsNet, and GoogleNet [31]
in terms of accuracy, sensitivity and specificity.

In Table 3, the results obtained by these algorithms
are compared with the proposed method. Our network
showed better performance compared to the existing tech-
niques. The proposed SVM-10 fold model achieved an
accuracy of 94%, a sensitivity of 93%, and a specificity of
91% on the Dermnet dataset.

Table 4 compares the accuracy of the proposed model
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Table 3. Comparison of proposed SVM-10 fold model with existing methods

S. No Ref Year Classifier Accuracy Sensitivity Specificity
1. [24] 2016 Joint Reverse Classification (JRC) 92.00 87.50 93.13

2. [25] 2014
Bag-of-words (BoW) model and

- 93 76.30Gray transform Shades
3. Proposed SVM-10 fold model 94 93 91

Table 4. SVM classification accuracy of the proposed approach in comparison with other approaches from the literature

ClsNet [26]
SVM

EfficientNet-B0 [27] CNN SENet [28]
GoogLeNet, AlexNet

Proposedclassifier and VGGNet
Model[29] [30]

Accuracy 80 83.83 93 91 84 94

with other state-of-the-art techniques, including ClsNet,
SENet etc and again it is proved that the proposed model
outperforms those techniques.

5. Conclusion

Skin diseases must be diagnosed early and precisely in or-
der to improve treatment outcomes and save recovery time.
As a result, an automated skin lesion identification system
is proposed as an early caution for skin lesion classification
in this study. The proposed system is mainly focused on
the classification of Granular Parakeratosis lesions in or-
der to aid in the improvement of recovery rates. The SVM
classifiers with hinge loss, linear activation function, and
the L2 regularizer, as well as 10-fold cross validation, were
primary contributions. This proposed ensemble model
achieved superior performance when compared with ex-
isting techniques. In addition, lesions classified using the
SVM-10 fold model achieved an outstanding performance
accuracy of 94%, sensitivity of 93%, and specificity of 91%.
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