Yi-Fang Chen and Ching-Yu PengThis email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Water Resources and Environmental Engineering, Tamkang University, 151 Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan


 

 

Received: March 7, 2025
Accepted: April 28, 2025
Publication Date: June 7, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202602_29(2).0013  


Phosphorus recovery is essential because phosphorus is a limited resource and excessive phosphorus concentration can adversely affect water quality. Flow-electrode capacitive deionization (FCDI), which employed activated carbons (ACs) or nano iron oxide/activated carbon (Fe3O4/AC) composites as flowable electrode materials, explored in this study has demonstrated effectively remove or recover sodium chloride or phosphorus. Characterization of flow-electrode materials and the effects of operation parameters, including phosphorus concentration, flow-electrode materials, applied voltage, and feasibility of reuse the recycled flow-electrode materials were thoroughly studied. As-prepared Fe3O4/AC composites were characterized as spherical magnetite nanoparticles with particle size of 200-400 nm. Our results showed that an optimal sodium chloride concentration of 20 g/L yielded the highest average salt removal rate (ASRR) of 9.94×10−4 mmol NaCl/min/cm2 and a good charge efficiency of 72.36%. For phosphorus removal, at 1000 mg/L NaH2PO4, FCDI system with the ACs flow electrode can achieve the highest ASRR (8.12×10−5 mmol P/min/cm2), the highest charge efficiency (60.27%), and the lowest energy consumption (192.11 kWh/mmol). FCDI system with Fe3O4/AC composites as flow electrode material demonstrated better selectivity of phosphorus over sodium ( βP/Na= 3.16) with higher charge efficiency and lower energy consumption, indicating its potential to sustainably remove or recover phosphorus. Recycled Fe3O4/AC composites showed its feasibility to be reused with comparable performance as that of original Fe3O4/AC composites. This study revealed that Fe3O4/AC composites can be potential flow-electrode materials for FCDI system to efficiently and sustainably remove or recover phosphorus from wastewater.

 


Keywords: Flow-electrode Capacitive Deionization (FCDI); Activated Carbon; Fe3O4/AC composites; Phosphorus


  1. [1] D. Cordell, A. Rosemarin, J. J. Schröder, and A. Smit, (2011) “Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options" Chemosphere 84(6): 747–758. DOI: 10.1016/j.chemosphere.2011.02.032.
  2. [2] T. Almeelbi and A. Bezbaruah. “Aqueous phosphate removal using nanoscale zero-valent iron”. In: Nanotechnology for Sustainable Development. Springer. 2014, 197–210. DOI: 10.1007/s11051-012-0900-y.
  3. [3] X. Yi, H. Zhong, M. Xie, and X. Wang, (2021) “A novel forward osmosis reactor assisted with microfiltration for deep thickening waste activated sludge: performance and implication" Water Research 195: 116998. DOI: 10.1016/j.waters.2021.116998.
  4. [4] J. Ren, Z. Zhu, Y. Qiu, F. Yu, J. Ma, and J. Zhao, (2021) “Magnetic field assisted adsorption of pollutants from an aqueous solution: A review" Journal of Hazardous Materials 408: 124846. DOI: 10.1016/j.jhazmat.2020.124846.
  5. [5] T. H. Boyer, A. Persaud, P. Banerjee, and P. Palomino, (2011) “Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water" Water research 45(16): 4803–4814. DOI: 10.1016/j.waters.2011.06.020.
  6. [6] T. Tervahauta, R. D. Van Der Weijden, R. L. Flem ming, L. H. Leal, G. Zeeman, and C. J. Buisman, (2014) “Calcium phosphate granulation in anaerobic treat ment of black water: a new approach to phosphorus recovery" Water research 48: 632–642. DOI: 10.1016/j. waters.2013.10.012.
  7. [7] Y. Lei, E. Geraets, M. Saakes, R. D. van der Weijden, and C. J. Buisman, (2020) “Electrochemical removal of phosphate in the presence of calcium at low current density: precipitation or adsorption?" Water research 169: 115207. DOI: 10.1016/j.waters.2019.115207.
  8. [8] M. Zubrowska-Sudol and J. Walczak, (2015) “Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge" Water Research 76: 10–18. DOI:10.1016/j.waters.2015.02.041.
  9. [9] J. Wilsenach, C. Schuurbiers, and M. Van Loosdrecht, (2007) “Phosphate and potassium recovery from source separated urine through struvite precipitation" Water research 41(2): 458–466. DOI: 10.1016/j.waters.2006.10.014.
  10. [10] M. A. Anderson, A. L. Cudero, and J. Palma, (2010) “Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?" Electrochimica Acta 55(12): 3845–3856. DOI: 10.1016/j.electacta.2010.02.012.
  11. [11] S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, (2013) “Review on the science and technology of water desalination by capacitive deionization" Progress in materials science 58(8): 1388–1442. DOI: 10.1016/j.pmatsci.2013.03.005.
  12. [12] M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, (2015) “Water desalination via capacitive deionization: what is it and what can we expect from it?" Energy & Environmental Science 8(8): 2296–2319.
  13. [13] W. Xing, J. Liang, W. Tang, G. Zeng, X. Wang, X. Li, L. Jiang, Y. Luo, X. Li, N. Tang, et al., (2019) “Perchlorate removal from brackish water by capacitive deionization: Experimental and theoretical investigations" Chemical engineering journal 361: 209–218. DOI: 10.1016/j.cej.2018.12.074.
  14. [14] K. S. Lee, Y. Cho, K. Y. Choo, S. Yang, M. H. Han, and D. K. Kim, (2018) “Membrane-spacer assembly for f low-electrode capacitive deionization" Applied Surface Science 433: 437–442. DOI: 10.1016/j.apsusc.2017.10.021.
  15. [15] C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, (2018) “Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review" Water research 128: 314–330. DOI: 10.1016/j.waters.2017.10.024.
  16. [16] K. Tang, S. Yiacoumi, Y. Li, and C. Tsouris, (2018) “Enhanced water desalination by increasing the electro conductivity of carbon powders for high-performance f low-electrode capacitive deionization" ACS Sustain able Chemistry & Engineering 7(1): 1085–1094. DOI: 10.1021/acssuschemeng.8b04746.
  17. [17] J. Dykstra, S. Porada, A. Van Der Wal, and P. Biesheuvel, (2018) “Energy consumption in capacitive deionization–Constant current versus constant voltage operation" Water research 143: 367–375. DOI: 10.1016/j.waters.2018.06.034.
  18. [18] A. Ramachandran, D. I. Oyarzun, S. A. Hawks, M. Stadermann, and J. G. Santiago, (2019) “High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation" Water research 155: 76–85. DOI: 10.1016/j.waters.2019.02.007.
  19. [19] W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, and G. Zeng, (2019) “Various cell architectures of capacitive deionization: Recent advances and future trends" Water research 150: 225–251. DOI: 10.1016/j.waters.2018.11.064.
  20. [20] W. Xing, J. Liang, W. Tang, D. He, M. Yan, X. Wang, Y. Luo, N. Tang, and M. Huang, (2020) “Versatile applications of capacitive deionization (CDI)-based technologies" Desalination 482: 114390. DOI: 10.1016/j.desal.2020. 114390.
  21. [21] J. Jiang, D. I. Kim, P. Dorji, S. Phuntsho, S. Hong, and H. K. Shon, (2019) “Phosphorus removal mechanisms from domestic wastewater by membrane capacitive deionization and system optimization for enhanced phosphate removal" Process Safety and Environmental Protection 126: 44–52. DOI: 10.1016/j.psep.2019.04.005.
  22. [22] C. Zhang, J. Ma, L. Wu, J. Sun, L. Wang, T. Li, and T. D. Waite, (2021) “Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives" Environmental Science &Technology 55(8): 4243–4267. DOI: 10.1021/acs.est.0c06552.
  23. [23] S.-i. Jeon, H.-r. Park, J.-g. Yeo, S. Yang, C. H. Cho, M. H. Han, and D. K. Kim, (2013) “Desalination via a new membrane capacitive deionization process utilizing flow-electrodes" Energy & Environmental Science 6(5): 1471–1475. DOI: 10.1039/c3ee24443a.
  24. [24] Y. Gendel, A. K. E. Rommerskirchen, O. David, and M. Wessling, (2014) “Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology" Electrochemistry Communications 46: 152–156. DOI: 10.1016/j.elecom.2014.06.004.
  25. [25] G. Doornbusch, J. Dykstra, P. Biesheuvel, and M. Suss, (2016) “Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization" Journal of Materials Chemistry A 4(10): 3642–3647. DOI: 10.1039/c5ta10316a.
  26. [26] S. Yang, J. Choi, J.-g. Yeo, S.-i. Jeon, H.-r. Park, and D. K.Kim, (2016)“Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration" Environmental science & technology 50(11): 5892–5899. DOI: 10.1021/acs.est.5b04640.
  27. [27] P. Nativ, Y. Badash, and Y. Gendel, (2017) “New in sights into the mechanism of flow-electrode capacitive deionization" Electrochemistry Communications 76: 24–28. DOI: 10.1016/j.elecom.2017.01.008.
  28. [28] M. Wang, S. Hou, Y. Liu, X. Xu, T. Lu, R. Zhao, and L. Pan, (2016) “Capacitive neutralization deionization with flowelectrodes" Electrochimica Acta 216: 211–218. DOI: 10.1016/j.electacta.2016.09.026.
  29. [29] C. Zhang, J. Ma, and T. D. Waite, (2019) “Ammonia rich solution production from wastewaters using chemical free flow-electrode capacitive deionization" ACS Sustain able Chemistry & Engineering 7(7): 6480–6485. DOI: 10.1021/acssuschemeng.9b00314.
  30. [30] K. B. Hatzell, M. C. Hatzell, K. M. Cook, M. Boota, G. M. Housel, A. McBride, E. C. Kumbur, and Y. Gogotsi, (2015) “Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization" Environmental science & technology 49(5): 3040–3047. DOI: 10.1021/es5055989.
  31. [31] A. Rommerskirchen, Y. Gendel, and M. Wessling, (2015) “Single module flow-electrode capacitive deioniza tion for continuous water desalination" Electrochemistry Communications 60: 34–37. DOI: 10.1016/j.elecom.2015.07.018.
  32. [32] H.-r. Park, J. Choi, S. Yang, S. J. Kwak, S.-i. Jeon, M. H. Han, and D. K. Kim, (2016) “Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization" RSC advances 6(74): 69720–69727. DOI: 10.1039/C6RA02480G.
  33. [33] J. Ma, D. He, W. Tang, P. Kovalsky, C. He, C. Zhang, and T. D. Waite, (2016) “Development of redox-active f low electrodes for high-performance capacitive deionization" Environmental Science & Technology 50(24): 13495–13501. DOI: 10.1021/acs.est.6b03424.
  34. [34] S. Yang, S.-i. Jeon, H. Kim, J. Choi, J.-g. Yeo, H.-r. Park, and D. K. Kim, (2016) “Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology" ACS Sustainable Chemistry & Engineering 4(8): 4174–4180. DOI: 10.1021/acssuschemeng.6b00689.
  35. [35] S. Yang, H.-r. Park, J. Yoo, H. Kim, J. Choi, M. H. Han, and D. K. Kim, (2017) “Plate-shaped graphite for improved performance of flow-electrode capacitive deionization" Journal of The Electrochemical Society 164(13): E480. DOI: 10.1149/2.1551713jes.
  36. [36] X. Xu, M. Wang, Y. Liu, T. Lu, and L. Pan, (2017) “Ultrahigh desalinization performance of asymmetric flow electrode capacitive deionization device with an improved operation voltage of 1.8 V" ACS Sustainable Chemistry & Engineering 5(1): 189–195. DOI: 10.1021/acssuschemeng.6b01212.
  37. [37] Y. Bian, X. Chen, L. Lu, P. Liang, and Z. J. Ren, (2019) “Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization" ACS Sustainable Chemistry & Engineering 7(8): 7844–7850. DOI: 10.1021/acssuschemeng.9b00065.
  38. [38] J. Zhang, L. Tang, W. Tang, Y. Zhong, K. Luo, M. Duan, W. Xing, and J. Liang, (2020) “Removal and recovery of phosphorus from low-strength wastewaters by f low-electrode capacitive deionization" Separation and Purification Technology 237: 116322. DOI: 10.1016/j.seppur.2019.116322.
  39. [39] C. Zhang, M. Wang, W. Xiao, J. Ma, J. Sun, H. Mo, and T. D. Waite, (2021) “Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI)" Water Research 189: 116653. DOI: 10.1016/j.waters.2020.116653.
  40. [40] Y. Zhan, F. Meng, Y. Lei, R. Zhao, J. Zhong, and X. Liu, (2011) “One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties" Materials Letters 65(11): 1737–1740. DOI: 10.1016/j.matlet.2011.03.019.
  41. [41] Y.-b. Tang, Q. Liu, and F.-y. Chen, (2012) “Preparation and characterization of activated carbon from waste ramulusmori" Chemical Engineering Journal 203: 19–24. DOI: 10.1016/j.cej.2012.07.007.
  42. [42] C.-M. Hung, C.-W. Chen, Y.-Z. Jhuang, and C.-D. Dong, (2016) “Fe3O4 magnetic nanoparticles: characterization and performance exemplified by the degradation of methylene blue in the presence of persulfate" Journal of Advanced Oxidation Technologies 19(1): 43–51. DOI: 10.1515/jaots-2016-0105.
  43. [43] C.-L. Yeh, H.-C. Hsi, K.-C. Li, and C.-H. Hou, (2015) “Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio" Desalination 367: 60–68. DOI: 10.1016/j.desal.2015.03.035.