S. Puttala1, T. Phantachang2, P. Chindaprasirt3, and S. Homwuttiwong4This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Civil Engineering and Architecture, Faculty of Industrial Technology, Sakon Nakhon Rajabhat University 47000, Thailand.

2Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand.

3Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand, and Academy of Science, Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.

4Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand.


 

 

Received: February 20, 2025
Accepted: May 14, 2025
Publication Date: June 28, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(3).0012  


This study addresses the critical challenges of construction waste management through the development of an innovative geopolymer mortar using agricultural and industrial waste materials. Using bagasse ash (BA) as the primary precursor and sodium hydroxide with sodium silicate as alkaline activators, the incorporation of water hyacinth fiber (WHF)with 0-5%and limestone dust (LSD)with20%replacementwassystematicallyinvestigated. A comprehensive mechanical characterization revealed: (1) the control geopolymer exhibited a compressive strength of 30 MPa after 28 days; (2) the incorporation of 1.25% WHF slightly reduced the compressive strength by 15-20%, while the flexural strength was significantly increased by 80%; (3) high-temperature curing at 100°C accelerated the early strength development to 35 MPa after 7 days, with a slight reduction in strength of 5-8% observed after 28 days. These results highlight the potential of waste-derived materials for the development of sustainable, high-performance composites for construction.


Keywords: Geopolymer; Concrete; Bagasse ash; Limestone dust; Water hyacinth fiber; Waste materials


  1. [1] B. Liu, J. Qin, J. Shi, J. Jiang, X. Wu, and Z. He, (2021) “New perspectives on utilization of CO2 sequestration technologies in cement-based materials" Construction and Building Materials 272: 121660. DOI: 10.1016/j.conbuildmat.2020.121660.
  2. [2] A. Ahmed, (2024) “Assessing the effects of supplementary cementitious materials on concrete properties: are view" Discover Civil Engineering 1(1): 1–47. DOI: 10.1007/s44290-024-00154-z.
  3. [3] M. Amran, S. Debbarma, and T. Ozbakkaloglu,(2021) “Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties" Construction and Building Materials 270: 121857. DOI: 10.1016/j.conbuildmat.2020.121857.
  4. [4] Y.-Y. Tsai, C. I. Vazquez, R.-F. Shiu, A. K. Garcia, C. Le, P. Patel, M. Sadqi, and W.-C. Chin, (2021) “Ef fects of Rock Dust Particles on Airway Mucus Viscosity" Biotechnology and Bioprocess Engineering 26: 427 434. DOI: 10.1007/s12257-020-0236-x.
  5. [5] L. K. Wang, M.-H. S. Wang, and N. K. Shammas. “Agricultural waste treatment by water hyacinth aquaculture, wetland aquaculture, evapotranspiration, rapid rate land treatment, slow rate land treatment, and subsurface infiltration”. In: Waste Treatment in the Biotechnology, Agricultural and Food Indus tries: Volume 1. Springer, 2022, 277–316. DOI: 10.1007/ 978-3-031-03591-3_6.
  6. [6] L. A. September, N. Kheswa, N. S. Seroka, and L. Khotseng, (2023) “Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash–a mini review" RSCadvances13(2):1370–1380. DOI:10.1039/d2ra07490g.
  7. [7] S. E. L. Gudia, A. W. Go, M. B. Giduquio, R. G. Juanir, J. B. Jamora, C. Gunarto, and I. D. F. Tabañag, (2023) “Sugarcane bagasse ash as a partial replacement for cement in paste and mortar formulation–A case in the Philip pines" Journal of Building Engineering 76: 107221. DOI: 10.1016/j.jobe.2023.107221.
  8. [8] K. Vimal, K. Churi, and J. Kandasamy, (2022) “Analysing the drivers for adoption of industry 4.0 technologies in a functional paper–cement–sugar circular sharing network" Sustainable Production and Consumption 31: 459–477. DOI: 10.1016/j.spc.2022.03.006.
  9. [9] N. Chuewangkam, T. Nachaithong, N. Chanlek, P. Thongbai, and S. Pinitsoontorn, (2022) “Mechanical and dielectric properties of fly ash geopolymer/sugarcane bagasse ash composites" Polymers 14(6): 1140. DOI: 10. 3390/polym14061140.
  10. [10] N.N.Khalid, W. K. Al-Saraj, H. F. Naji, et al., (2021) “Behavior of MK-based Geopolymer Concrete Circular Columns Exposed to Fire" Journal of Applied Science and Engineering 24(1): 91–97. DOI: 10.6180/jase.202102_24(1).0012.
  11. [11] H. Zhang, Q. Zhang, M. Zhang, S. Tang, Y. Pei, F. Skoczylas, and S. Feng, (2024) “Effect of fly ash and metakaolin on the mechanical properties and microstructure of magnesium ammonium phosphate cement paste" Construction and Building Materials 424: 135871. DOI: 10.1016/j.conbuildmat.2024.135871.
  12. [12] S. S. Pradhan, S. Pramanik, U. Mishra, S. K. Biswal, and S. Thapa, (2023) “Effect of RHA on mechanical properties of GGBS based alkali activated concrete: an experimental and statistical modelling" Russian Journal of Nondestructive Testing 59(7): 767–784. DOI: 10.1134/S1061830923600375.
  13. [13] S. Kumar, L. Prasad, V. K. Patel, V. Kumar, A. Kumar, and A. Yadav, (2022) “Physico-mechanical properties and Taguchi optimized abrasive wear of alkali treated and fly ash reinforced Himalayan agave fiber polyester composite" Journal of Natural Fibers 19(14): 9269–9282. DOI: 10.1080/15440478.2021.1982818.
  14. [14] B. S. Thomas, J. Yang, K. H. Mo, J. A. Abdalla, R. A. Hawileh, and E. Ariyachandra, (2021) “Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review" Journal of Building Engineering 40: 102332. DOI: 10.1016/j.jobe.2021. 102332.
  15. [15] A. International. ASTM C618-22, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. 2022.
  16. [16] P. Chindaprasirt and U. Rattanasak, (2020) “Eco production of silica from sugarcane bagasse ash for use as a photochromic pigment filler" Scientific reports 10(1): 9890. DOI: 10.1038/s41598-020-66885-y.
  17. [17] I. Phummiphan, S. Horpibulsuk, R. Rachan, A. Arul rajah, S.-L. Shen, and P. Chindaprasirt, (2018) “High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material" Journal of hazardous materials 341: 257 267. DOI: 10.1016/j.jhazmat.2017.07.067.
  18. [18] Y.-C. Choi, (2024) “Degree of Hydration, Microstructure, and Mechanical Properties of Cement-Modified TiO2 Nanoparticles" Materials 17(18): 4541. DOI: 10.3390/ma17184541.
  19. [19] B. N. Bayiha, N. Billong, E. Yamb, R. C. Kaze, and R. Nzengwa, (2019) “Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite" Construction and Building Materials 217: 28–35. DOI: 10.1016/j.conbuildmat.2019.05.058.
  20. [20] Z. Jiang, Q. Yang, B. Wang, C. Li, J. Zhang, and Q. Ren, (2024) “Limestone filler as a mineral additive on the compressive strength and durability of self-compacting concrete with limestone manufactured sand" Journal of Building Engineering 94: 109965. DOI: 10.1016/j.jobe.2024.109965.
  21. [21] G. Fares, M. H. Albaroud, and M. I. Khan, (2020) “Fine limestone dust from ornamental stone factories: a potential filler in the production of High-Performance Hybrid Fiber-Reinforced Concrete" Construction and Building Materials 262: 120009. DOI: 10.1016/j.conbuildmat.2020.120009.
  22. [22] R. Alyousef, W. Abbass, F. Aslam, and S. A. A. Gillani, (2023) “Characterization of high-performance concrete using limestone powder and supplementary fillers in binary and ternary blends under different curing regimes" Case Studies in Construction Materials 18: e02058. DOI: 10.1016/j.jobe.2023.106180.
  23. [23] R. Alyousef, W. Abbass, F. Aslam, and S. A. A. Gillani, (2023) “Characterization of high-performance concrete using limestone powder and supplementary fillers in binary and ternary blends under different curing regimes" Case Studies in Construction Materials 18: e02058. DOI: 10.1016/j.cscm.2023.e02058.
  24. [24] A. ASTM.C109/C109M-16a Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2016. 2017.
  25. [25] ASTM.ASTMC348-14. 2014.
  26. [26] B.-h. Mo, H. Zhu, X.-m. Cui, Y. He, and S.-y. Gong, (2014) “Effect of curing temperature on geopolymerization of metakaolin-based geopolymers" Applied clay science 99: 144–148. DOI: 10.1016/j.clay.2014.06.024.
  27. [27] A. Akbar, F. Farooq, M. Shafique, F. Aslam, R. Alyousef, and H. Alabduljabbar, (2021) “Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers" Journal of Building Engineering 33: 101492. DOI: 10.1016/j.jobe.2020.101492.
  28. [28] J. L. Pastor, R. Tomás, M. Cano, A. Riquelme, and E. Gutiérrez, (2019) “Evaluation of the improvement effect of limestone powder waste in the stabilization of swelling clayey soil" Sustainability 11(3): 679. DOI: 10.3390/su11030679.
  29. [29] H.Abral, D. Kadriadi, A. Rodianus, P. Mastariyanto, S. Arief, S. Sapuan, M. R. Ishak, et al., (2014) “Mechanical properties of water hyacinth fibers–polyester composites before and after immersion in water" Materials & Design 58: 125–129. DOI: 10.1016/j.matdes.2014.01.043.
  30. [30] S. Tan and A. Supri, (2016) “Properties of low-density polyethylene/natural rubber/water hyacinth fiber composites: the effect of alkaline treatment" Polymer Bulletin 73: 539–557. DOI: 10.1007/s00289-015-1508-z.
  31. [31] N. H. Sari, E. Syafri, W. Fatriasari, A. Karimah, et al., (2024) “Biocomposites Based On Micro Cellulose Fibers Extracted From Paederia Foetida Stems And Investigation Of Important Properties" Journal of Applied Science and Engineering 27(9): 3261–3272. DOI: 10.6180/jase.202409_27(9).0015.
  32. [32] M. H. Hemida, H. Moustafa, S. Mehanny, M. Morsy, A. Dufresne, E. N. A. E. Rahman, and M. Ibrahim, (2023) “Cellulose nanocrystals from agricultural residues (Eichhornia crassipes): Extraction and characterization" Heliyon 9(6): DOI: 10.1016/j.heliyon.2023.e16436.
  33. [33] S. Puttala, W. Hiranphattararoj, and S. Homwutti wong, (2021) “Development of a geopolymer made from bagasse ash for use a cementitious material" Asia-Pacific Journal of Science and Technology 26(4): 10. DOI: 10.14456/apst.2021.31.
  34. [34] A. Sittinun, P. Pisitsak, and S. Ummartyotin, (2020) “Improving the oil sorption capability of porous polyurethane composites by the incorporation of cellulose fibers extracted from water hyacinth" Composites Communications 20: 100351. DOI: 10.1016/j.coco.2020.04.017.
  35. [35] S. Puttala, M. Ongwandee, K. Homwutthiwong, and S. Homwuttiwong, (2022) “STRENGTH ENHANCE MENT BY COMBINED THE CALCINED WATER SUPPLYSLUDGEINBAGASSEASHGEOPOLYMER CONCRETE":
  36. [36] K.-H. Yang, A.-R. Cho, and J.-K. Song, (2012) “Ef fect of water–binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete" Construction and Building Materials 29: 504–511. DOI: 10.1016/j.conbuildmat.2011.10.062.
  37. [37] P. Sukmak, S. Horpibulsuk, S.-L. Shen, P. Chindaprasirt, and C. Suksiripattanapong, (2013) “Factors influencing strength development in clay–fly ash geopoly mer" Construction and Building Materials 47: 1125 1136. DOI: 10.1016/j.conbuildmat.2013.05.104.
  38. [38] J. Wongpa, K. Kiattikomol, C. Jaturapitakkul, and P. Chindaprasirt, (2010) “Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete" Materials & Design 31(10): 4748–4754. DOI: 10.1016/j.matdes.2010.05.012.
  39. [39] P. Sajan, T. Jiang, C. Lau, G. Tan, and K. Ng, (2021) “Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer" Cleaner Materials 1: 100002. DOI: 10.1016/j.clema.2021.100002.
  40. [40] M. Muracchioli, G. Menardi, M. D’Agostini, G. Franchin, and P. Colombo, (2023) “Modeling the com pressive strength of metakaolin-based geopolymers based on the statistical analysis of experimental data" Applied Clay Science 242: 107020. DOI: 10.1016/j.clay.2023.107020.
  41. [41] S. Detphan and P. Chindaprasirt, (2009) “Preparation of fly ash and rice husk ash geopolymer" International Journal ofMinerals,MetallurgyandMaterials16(6): 720–726. DOI: 10.1016/S1674-4799(10)60019-2.
  42. [42] C. Lv and J. Liu, (2023) “Alkaline degradation of plant fiber reinforcements in geopolymer: a review" Molecules 28(4): 1868. DOI: 10.3390/molecules28041868.
  43. [43] L. B. Addis, Z. B. Sendekie, and N. Satheesh, (2022) “Degradation Kinetics and Durability Enhancement Strategies of Cellulosic Fiber-Reinforced Geopolymers and Cement Composites" Advances in Materials Science and Engineering 2022(1): 1981755. DOI: 10.1155/2022/ 1981755.
  44. [44] H. Qu, M. Feng, M. Li, D. Tian, Y. Zhang, X. Chen, and G. Li, (2023) “Enhancing the carbonation and chloride resistance of concrete by nano-modified eco-friendly water-based organic coatings" Materials Today Communications 37: 107284. DOI: 10.1016/j.mtcomm.2023.107284.
  45. [45] T. S. Tie, K. H. Mo, A. Putra, S. C. Loo, U. J. Alen garam, and T.-C. Ling, (2020) “Sound absorption performance of modified concrete: A review" Journal of Building Engineering 30: 101219. DOI: 10.1016/j.jobe.2020.101219.
  46. [46] S. Sharma, P. Sudhakara, J. Singh, S. Singh, and G. Singh, (2023) “Emerging progressive developments in the fibrous composites for acoustic applications" Journal of Manufacturing Processes 102: 443–477. DOI: 10.1016/j.jmapro.2023.07.053.
  47. [47] S. Niyasom and N. Tangboriboon, (2021) “Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction" Construction and Building Materials 283: 122627. DOI: 10.1016/j.conbuildmat.2021.122627.
  48. [48] A. Wongsa, R. Kunthawatwong, S. Naenudon, V. Sata, and P. Chindaprasirt, (2020) “Natural fiber reinforced high calcium fly ash geopolymer mortar" Construction and Building Materials 241: 118143. DOI: 10.1016/j.conbuildmat.2020.118143.
  49. [49] X. Han, P. Zhang, Y. Zheng, and J. Wang, (2023) “Utilization of municipal solid waste incineration fly ash with coal fly ash/metakaolin for geopolymer composites preparation" Construction and Building Materials 403: 133060. DOI: 10.1016/j.conbuildmat.2023.133060.
  50. [50] D. K. Rajak, P. H. Wagh, and E. Linul, (2022) “A re view on synthetic fibers for polymer matrix composites: performance, failure modes and applications" Materials 15(14): 4790. DOI: 10.3390/ma15144790.
  51. [51] M. A. Khan, B. Zhang, M. Ahmad, M. Niekurzak, M. S. Khan, M. M. Sabri Sabri, and W. Chen, (2025) “Optimizing concrete sustainability with bagasse ash and stone dust and its impact on mechanical properties and durability" Scientific reports 15(1): 1385. DOI: 10.1038/s41598-025-85363-x.
  52. [52] D. Glavas, G. Grolleau, and N. Mzoughi, (2023) “Greening the greenwashers–How to push greenwashers to wards more sustainable trajectories" Journal of Cleaner Production 382: 135301. DOI: 10.1016/j.jclepro.2022.135301.
  53. [53] P. Sangkeaw, N. Phoeychawee, C. Thongchom, J. Lawaongkerd, S. Keawsawasvong, and C. Suksiri pattanapong, (2024) “Alkaline Pretreatment Of Banana Pseudostem Waste For Green Cellulose Fiber Composite Materials" Journal of Applied Science and Engineer ing 28(2): 399–409. DOI: 10.6180/jase.202502_28(2) .0018.