Jing Yu and Lu ZhaoThis email address is being protected from spambots. You need JavaScript enabled to view it.

Lu Xun Academy of Fine Arts, Shenyang 110816 China.


 

 

Received: April 16, 2025
Accepted: May 6, 2025
Publication Date: June 8, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202602_29(2).0018  


Gesture recognition aims to understand the dynamic gestures of human body, and is one of the most important interaction methods in the field of human-computer interaction. In order to improve the current situation that the existing gesture recognition algorithms need a lot of training data, this paper proposes a modified generative adversarial network (GAN) and Pseudo-Zernike matrix features extraction method to solve the problems of low recognition accuracy and complex recognition process. Firstly, the improved InceptionV2 and InceptionV2-trans structures are added to the encoder and decoder respectively to enhance the feature reduction capability of the model. Secondly, conditional batch normalization is performed in each component network to improve over-fitting, and Mish activation function is used instead of ReLU function to improve network performance. Meanwhile, we use the Pseudo-Zernike matrix to extract local features to enhance the feature extraction ability. Experiments show that the proposed method can obtain higher classification accuracy with fewer samples, and the convergence time is short, which verifies the reliability of the proposed method.


Keywords: modified generative adversarial network, Pseudo-Zernike matrix, feature extraction, InceptionV2, Mish activation function


  1. [1] R. Hamdani and I. Chihi, (2025)“Adaptivehuman computerinteractionforindustry5.0:Anovelconcept, with comprehensive reviewand empirical validation" ComputersinIndustry168:104268.DOI:10.1016/j.compind.2025.104268.
  2. [2] Z. Lyu, (2024) “State-of-the-art human-computer interaction in metaverse" International Journal of Human–Computer Interaction 40(21): 6690–6708. DOI: 10.1080/10447318.2023.2248833.
  3. [3] J. G. C. Ramírez, (2024) “Natural language processing advancements: Breaking barriers in human-computer interaction" Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 3(1): 31–39. DOI: 10.60087/jaigs.v3i1.63.
  4. [4] J. Yu, Z. Lu, S. Yin, and M. Ivanovi´c, (2024) “News recommendation model based on encoder graph neural network and bat optimization in online social multimedia art education" Computer Science and Information Systems 21(3): 989–1012. DOI: 10.2298/CSIS231225025Y.
  5. [5] K. Chen and W. Tao, (2017) “Once for all: a two-flow convolutional neural network for visual tracking" IEEE Transactions on Circuits and Systems for Video Technology 28(12): 3377–3386. DOI: 10.1109/TCSVT. 2017.2757061.
  6. [6] N. Liu and J. Han, (2018) “A deep spatial contextual long-term recurrent convolutional network for saliency detection" IEEE Transactions on Image Processing 27(7): 3264–3274. DOI: 10.1109/TIP.2018.2817047.
  7. [7] B. Zhang, L. Zhao, and X. Zhang, (2020) “Three dimensional convolutional neural network model for tree species classification using airborne hyperspectral images" Remote Sensing of Environment 247: 111938. DOI: 10.1016/j.rse.2020.111938.
  8. [8] H. Wang, Y. Liu, X. Zhen, and X. Tu, (2021) “Depression speech recognition with a three-dimensional convolutional network" Frontiers in human neuroscience 15: 713823. DOI: 10.3389/fnhum.2021.713823.
  9. [9] T. Huynh-The, T.-V. Nguyen, Q.-V. Pham, D. B. da Costa, and D.-S. Kim, (2022) “MIMO-OFDM modulation classification using three-dimensional convolutional network" IEEE Transactions on Vehicular Technology 71(6): 6738–6743. DOI: 10.1109/TVT.2022.3159254.
  10. [10] K. Zhang, Y. Guo, X. Wang, J. Yuan, and Q. Ding, (2019) “Multiple feature reweight densenet for image classification" IEEE access 7: 9872–9880. DOI: 10.1109/ ACCESS.2018.2890127.
  11. [11] S. Yin, H. Li, A. A. Laghari, T. R. Gadekallu, G. A. Sampedro, and A. Almadhor, (2024) “An Anomaly Detection Model Based on Deep Auto-Encoder and Capsule Graph Convolution via Sparrow Search Algorithm in 6G Internet of Everything" IEEE Internet of Things Journal 11(18): 29402–29411. DOI: 10.1109/JIOT.2024.3353337.
  12. [12] Y. Pang and Y. Liu. “Conditional generative adversarial networks (CGAN) for aircraft trajectory prediction considering weather effects”. In: AIAA Scitech 2020 Forum. 2020, 1853. DOI: 10.2514/6.2020-1853.
  13. [13] T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli, (2020) “The autoencoding variational autoencoder" Advances in Neural Information Processing Systems 33: 15077–15087. DOI: 10.1117/12.2512660.6013931859001.
  14. [14] J. Yu, H. Li, S.-L. Yin, and S. Karim, (2020) “Dynamic gesture recognition based on deep learning in human-to computer interfaces" Journal of Applied Science and Engineering 23(1): 31–38. DOI: 10.6180/jase.202003_ 23(1).0004.
  15. [15] M. Segu, A. Tonioni, and F. Tombari, (2023) “Batch normalization embeddings for deep domain generalization" Pattern Recognition 135: 109115. DOI: 10.1016/j.patcog.2022.109115.
  16. [16] S. R. Bose and V. S. Kumar, (2020) “Efficient inception V2 based deep convolutional neural network for real-time hand action recognition" IET Image Processing 14(4): 688–696. DOI: 10.1049/iet-ipr.2019.0985.
  17. [17] G. Papakostas, Y. Boutalis, D. Karras, and B. Mertzios, (2010) “Efficient computation of Zernike and Pseudo Zernike moments for pattern classification applications" Pattern Recognition and Image Analysis 20: 56–64. DOI: 10.1134/S1054661810010050.
  18. [18] J. Wan, C. Lin, L. Wen, Y. Li, Q. Miao, S. Escalera, G. Anbarjafari, I. Guyon, G. Guo, and S. Z. Li, (2020) “ChaLearn looking at people: Iso GD and Con GD large scale RGB-D gesture recognition" IEEE Transactions on Cybernetics 52(5): 3422–3433. DOI: 10.1109/TCYB.2020.3012092.
  19. [19] Y. Tie, X. Zhang, J. Chen, L. Qi, and J. Tie, (2023) “Dynamic Gesture Recognition Based on Deep 3DNatural Networks" Cognitive Computation 15(6): 2087–2100. DOI: 10.1007/s12559-023-10177-w.
  20. [20] A. Cuadra, M. Wang, L. A. Stein, M. F. Jung, N. Dell, D. Estrin, and J. A. Landay.“Theillusion of empathy? notes on displays of emotion in human-computer interaction”. In: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. 2024, 1–18. DOI: 10.1145/3613904.3642336.
  21. [21] N. Al Mudawi, H. Ansar, A. Alazeb, H. Aljuaid, Y. AlQahtani, A. Algarni, A. Jalal, and H. Liu, (2024) “Innovative healthcare solutions: robust hand gesture recognition of daily life routines using 1D CNN" Frontiers in Bioengineering and Biotechnology 12: 1401803. DOI: 10.3389/fbioe.2024.1401803.
  22. [22] Y. Xiong, Z. Huo, J. Zhang, Y. Liu, D. Yue, N. Xu, R. Gu, L. Wei, L. Luo, M. Chen, etal., (2024)“Triboelectric in-sensor deep learning for self-powered gesture recognition toward multifunctional rescue tasks" Nano Energy 124: 109465. DOI: 10.1016/j.nanoen.2024.109465.
  23. [23] R. Rastgoo, K. Kiani, S. Escalera, and M. Sabokrou, (2024) “Multi-modal zero-shot dynamic hand gesture recognition" Expert Systems with Applications 247: 123349. DOI: 10.1016/j.eswa.2024.123349.
  24. [24] A. S. M. Miah, M. A. M. Hasan, Y. Tomioka, and J. Shin, (2024) “Hand gesture recognition for multi-culture sign language using graph and general deep learning net work" IEEE Open Journal of the Computer Society 5: 144–155. DOI: 10.1109/OJCS.2024.3370971.
  25. [25] L. I. B. López, F. M. Ferri, J. Zea, Á. L. V. Caraguay, and M. E. Benalcázar, (2024) “CNN-LSTM and post processing for EMG-based hand gesture recognition" In telligent Systems with Applications 22: 200352. DOI: 10.1016/j.iswa.2024.200352.
  26. [26] Z. Chen, W. Huang, H. Liu, Z. Wang, Y. Wen, and S. Wang, (2024) “ST-TGR: Spatio-temporal representation learning for skeleton-based teaching gesture recognition" Sensors 24(8): 2589. DOI: 10.3390/s24082589.