Younes Hazem Thiyab1This email address is being protected from spambots. You need JavaScript enabled to view it. and Ghaith Ali Salom2
1Nineveh Education Directorate, Ministry of Education, Nineveh, Iraq
2Ministry of Education third Directorate of Karkh education, Iraq
Received: July 2, 2023 Accepted: January 12, 2025 Publication Date: June 8, 2025
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Matthew introduced a partial metric, sometimes known as a non-zero self-distance. This paper seeks to extend Matthew’s notion to the fuzzy soft universe and create a partial fuzzy soft metric. Then we investigate the convergence of fuzzy soft sequences, fuzzy soft closed ball, fuzzy soft open ball, fuzzy soft map, and fuzzy soft fixed point theorems in a partial fuzzy soft metric space, as well as some fundamental characteristics.
Keywords: Fso-real number; partial Fso-metric space; Fso-mapping; Fso-Fixed point theorems
[1] S. G. Matthews, (1994) “Partial metric topology" Annals of the New York Academy of Sciences 728(1): 183–197. DOI: 10.1111/j.1749-6632.1994.tb44144.x.
[2] L. A. Zadeh, (1965) “Fuzzy sets" Information and Control: DOI: 10.1016/S0019-9958(65)90241-X.
[3] D. Molodtsov, (1999) “Soft set theory—first results" Computers & Mathematics with Applications 37(4 5): 19–31. DOI: 10.1016/S0898-1221(99)00056-5.
[4] T. Beaula and C. Gunaseeli, (2014) “On fuzzy soft metric spaces" Malaya Journal of Matematik 2(03): 197 202. DOI: 10.26637/mjm203/003.
[5] R. Sonam Bhardwaj and S. Narayan, (2023) “Fixed point results in soft fuzzy metric spaces" Mathematics 11(14): 3189. DOI: 10.3390/math11143189.
[6] J. R. Kider, (2020) “Some Properties of Fuzzy Soft Metric Space" Al-Qadisiyah Journal of Pure Science 25(3): 46–61. DOI: 10.29350/qjps.2020.25.3.1149.
[7] R. I. Sabri, (2021) “Compactness property of fuzzy soft metric space and fuzzy soft continuous function" Iraqi Journal of Science: 3031–3038. DOI: 10.24996/ijs.2021.62.9.18.
[8] S. D. Mohsen and Y. H. Thiyab, (2024) “Some Characteristics Of Completeness Property In Fuzzy Soft b-Metric Space" Journal of Applied Science and Engineering 27(3): 2227–2232. DOI: http://jase.tku.edu.tw/ articles/jase-202403-27-3-0009.
[9] S. D. Mohsen, “Some generalizations of fuzzy soft (kˆ Â)-quasinormal operators in fuzzy soft Hilbert spaces": DOI: 10.47974/JIM-1612.
[10] S.QasimHasanandM.AbbasHolel,(2018)“Solution of some types for composition fractional order differential equations corresponding to optimal control problems" Journal of Control Science and Engineering 2018(1): 3767263. DOI: 10.1155/2018/3767263.
[11] M. A. Holel and S. Q. Hasan, (2023) “The Necessary and Sufficient Optimality Conditions for a System of FOCPs with Caputo–Katugampola Derivatives" Bagh dad Science Journal 20(5): 1713–1713. DOI: 10.21123/ bsj.2023.7515.
[12] M. A. Holel and S. Q. Hasan, (2023) “Studying The Necessary Optimality Conditions and Approximates a Class of Sum Two Caputo–Katugampola Derivatives for FOCPs" Iraqi Journal of Science: 842–854. DOI: 10.24996/ijs.2023.64.2.30.
[13] M. A. Holel and S. Q. Hasan, (2022) “Optimality of the Generalization New Class of Caputo-Katugampola Fractional Optimal Control Problems" Mathematical Combinatorics 4: 50–59. DOI: https://fs.unm.edu/IJMC/.
[14] S. Alkhazaleh and A. R. Salleh, (2014) “Fuzzy soft expert set and its application" Applied Mathematics 5(9): 1349–1368. DOI: 10.4236/am.2014.59127.
[15] R. Gao and J. Wu, (2021) “Filter with its applications in fuzzy soft topological spaces" AIMS Mathematics 6(3): 2359–2368. DOI: 10.3934/math.2021143.
[16] N. Faried, M. Ali, and H. Sakr, (2020) “Fuzzy soft Hilbert spaces" Mathematics and Statistics 8(3): DOI: 10.22436/jmcs.022.02.06.
[17] N. Faried, M. S. Ali, and H. H. Sakr, (2020) “Fuzzy soft inner product spaces" Applied Mathematics and Information Sciences 14(4): 709–720. DOI: 10.18576/amis/140419.
[18] A. K. Das, C. Granados, and J. Bhattacharya, (2022) “Some new operations on fuzzy soft sets and their applications in decision-making" Songklanakarin Journal of Science and Technology 44(2): 440–449. DOI: 10. 14456/sjst-psu.2022.61.
[19] A. Z. Khameneh, A. Kiliçman, and A. R. Salleh, (2013) “Parameterized norm and parameterized fixed-point theorem by using fuzzy soft set theory" arXiv preprint: DOI: 10.48550/arXiv.1309.4921.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.