Agung Nugroho1This email address is being protected from spambots. You need JavaScript enabled to view it., Izzan Fariz Rahman1, Farhan Erviansyah1, Nur Layli Amanah1, Yohana Fransiska Ferawati2, Arenst Andreas Arie3, and Ratna Frida Susanti3This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Chemical Engineering, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta, Indonesia

2Departement of Chemical Engineering, Politeknik Negeri Bandung, Jawa Barat, Indonesia

3Chemical Engineering Department, Industrial Technology Faculty, Parahyangan Catholic University, Bandung, Jawa Barat, Indonesia


 

 

Received: September 29, 2024
Accepted: April 4, 2025
Publication Date: June 7, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202602_29(2).0012  


One possible approach to improve the electrochemical properties of reduced graphene oxide (rGO) is the heteroatom doping strategy. Usually, just one or two atom doping can boost electrode performance. We opted to see if three-atom doping can further improve performance. We simultaneously doped three atoms (N, F and S) into the rGO structure using thiourea and ammonium fluoride as dopant precursors with the hydrothermal method. Three-atom doping via C-N, C-S, and C-F bonds was verified by X-ray photoelectron spectrum (XPS) study. Moreover, Energy Dispersive X-ray (EDX) mapping showed a homogeneous distribution of S (13.96%), N(5.66%), and F (0.62%). The electrochemical investigation revealed that NSF-rGO outperformed pristine rGO, with a specific capacitance of 601.33 F/g at 1 A/g, exceeding undoped rGO ( 578.67 F/g ). These results suggest that three-atom doping might be beneficial approach to improve rGO properties, therefore generating a suitable electrode material for use in energy storage.


Keywords: electrochemical, doping, hydrothermal, reduced graphene oxide


  1. [1] F. Ahmad, M. Khalid, and B. K. Panigrahi, (2021) “Development in energy storage system for electric transportation: A comprehensive review" Journal of Energy Storage 43: 103153. DOI: https://doi.org/10.1016/j.est.2021.103153
  2. [2] T. M. Gur, (2018) “Review of electrical energy stor age technologies, materials and systems: challenges and prospects for large-scale grid storage" Energy & Environmental Science 11(10): 2696–2767. DOI: 10.1039/C8EE01419A.
  3. [3] S. K. Vineeth, M. Tebyetekerwa, H. Liu, C. B. Soni, Sungjemmenla, X. S. Zhao, and V. Kumar, (2022) “Progress in the development of solid-state electrolytes for reversible room-temperature sodium–sulfur batteries" Materials Advances 3(16): 6415–6440. DOI: 10.1039/D2MA00428C.
  4. [4] A.Y. S. Eng, C. B. Soni, Y. Lum, E. Khoo, Z. Yao, S. K. Vineeth, V. Kumar, J. Lu, C. S. Johnson, C. Wolverton, and Z. W. Seh, (2025) “Theory-guided experimental de sign in battery materials research" Science Advances 8(19): eabm2422. DOI: 10.1126/sciadv.abm2422.
  5. [5] J. F. M. J. Prasanth Raghavan, Akhila Das. “Metal Ion, Hybrid, and Metal-Air Batteries”. In: Advanced Technologies for Rechargeable Batteries. 1st. Boca Raton: CRC Press, 2024, 396. DOI: https://doi.org/10.1201/9781003310174
  6. [6] S. K. Vineeth, A. Babu, A. Das, A. Pullanchiyodan, N. Gupta, V. Pillai, and P. Raghavan. “Metal Air Battery Future of Hybrid or Electric Vehicles (HEV or EV)”. In: Advanced Technologies for Rechargeable Batteries. 1st. Boca Raton: CRC Press, 2024, 396. DOI: https://doi.org/10.1201/9781003310174.
  7. [7] S. K. Vineeth, P. Sreeram, A. Vlad, R. Joy, P. Raghavan, and A. Pullanchiyodan. “7- Polymer blend nanocomposite electrolytes for advanced energy storage ap plications”. In: Micro and Nano Technologies. Ed. by S. Thomas, A. R. Ajitha, and M. B. T. .-. P. B. N. f. E. S. A. Jaroszewski. Elsevier, 2023, 203–238. DOI: https://doi.org/10.1016/B978-0-323-99549-8.00016-9.
  8. [8] N. S. Jishnu, S. K. Vineeth, A. Das, N. T. M. Balakrish nan, A. P. Thomas, M. J. Jabeen Fatima, J.-H. Ahn, and R. Prasanth. “Electrospun PVdF and PVdF-co-HFP Based Blend Polymer Electrolytes for Lithium Ion Batteries BT- Electrospinning for Advanced Energy Storage Applications”. In: ed. by N. T. M. Balakrish nan and R. Prasanth. Singapore: Springer Singapore, 2021, 201–234. DOI: 10.1007/978-981-15-8844-0_8.
  9. [9] C. Liu, X. Yan, F. Hu, G. Gao, G. Wu, and X. Yang, (2018) “Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes" Advanced Materials 30(17): 1705713. DOI: https://doi.org/10.1002/adma.201705713.
  10. [10] R. Dubey and V. Guruviah, (2019) “Review of carbon based electrode materials for supercapacitor energy storage" Ionics 25(4): 1419–1445. DOI: 10.1007/s11581-019-02874-0.
  11. [11] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, (2017) “Carbon-based composite materials for supercapacitor electrodes: A review" Journal of Materials Chemistry A 5(25): 12653 12672. DOI: 10.1039/c7ta00863e.
  12. [12] W. Hooch Antink, Y. Choi, K.-d. Seong, J. M. Kim, and Y. Piao, (2018) “Recent Progress in Porous Graphene and Reduced Graphene Oxide-Based Nanomaterials for Electrochemical Energy Storage Devices" Advanced Materials Interfaces 5(5): 1701212. DOI: https://doi.org/10.1002/admi.201701212.
  13. [13] P. Zhang, Z. Li, S. Zhang, and G. Shao, (2018) “Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage" Energy & Environmental Materials 1(1): 5–12. DOI: https://doi.org/10.1002/eem2.12001.
  14. [14] E. Budi Nursanto, A. Nugroho, S.-A. Hong, S. Kim, K. Yoon Chung, and J. Kim, (2011) “Facile synthesis of reduced graphene oxide in supercritical alcohols and its lithium storage capacity" Green Chemistry 13(10): 2714–2718. DOI: 10.1039/c1gc15678k.
  15. [15] M. Seo, D. Yoon, K. S. Hwang, J. W. Kang, and J. Kim, (2013) “Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide" Car bon 64: 207–218. DOI: https://doi.org/10.1016/j.carbon.2013.07.053.
  16. [16] M. Ghorbani, H. Abdizadeh, and M. Golobostanfard, (2015) “Reduction of Graphene Oxide via Modified Hydrothermal Method" Procedia Materials Science 11(2009): 326–330. DOI: 10.1016/j.mspro.2015.11.104.
  17. [17] Z. Y. Sui, Y. N. Meng, P. W. Xiao, Z. Q. Zhao, Z. X. Wei, and B. H. Han, (2015) “Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas ad sorbents" ACSAppliedMaterialsandInterfaces7(3): 1431–1438. DOI: 10.1021/am5042065.
  18. [18] Y. Wang, M. Hu, D. Ai, H. Zhang, Z. H. Huang, R. Lv, and F. Kang, (2019) “Sulfur-doped reduced graphene oxide for enhanced sodium ion pseudocapacitance" Nano materials 9(5): DOI: 10.3390/nano9050752.
  19. [19] T. Jin, J. Chen, C. Wang, Y. Qian, and L. Lu, (2020) “Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high performance supercapacitor application" Journal of Materials Science 55(26): 12103–12113. DOI: 10.1007/s10853-020-04821-1.
  20. [20] P. Yan, L. Yan, S. Zhao, Z. Zuo, X. Wang, C. Wang, and M. Hou, (2019) “Fluorine-Doped Graphene/Nanosized Carbide-Derived Carbon Composites for High-Performance Supercapacitor" Nano 14(8): 1–11. DOI: 10.1142/S1793292019500991.
  21. [21] V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, (2016) “Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications" Synthetic Metals 220: 524–532. DOI: 10.1016/j.synthmet.2016.07.011.
  22. [22] W. Zhang, Z. Chen, X. Guo, K. Jin, Y. X. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, and T. Zhang, (2018) “N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor" Electrochimica Acta 278: 51–60. DOI: 10.1016/j.electacta.2018.05.018.
  23. [23] A. G. Kannan, J. Zhao, S. G. Jo, Y. S. Kang, and D. W. Kim, (2014) “Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells" Journal of Materials Chemistry A 2(31): 12232–12239. DOI: 10.1039/c4ta01927j.
  24. [24] Z. Lu, Y. Chen, Z. Liu, A. Li, D. Sun, and K. Zhuo, (2018) “Nitrogen and sulfur co-doped graphene aerogel for high performance supercapacitors" RSC Advances 8(34): 18966–18971. DOI: 10.1039/c8ra01715h.
  25. [25] Z. Ouyang, Y. Lei, Y. Chen, Z. Zhang, Z. Jiang, J. Hu, and Y. Lin, (2019) “Preparation and Specific Capacitance Properties of Sulfur, Nitrogen Co-Doped Graphene Quan tum Dots" Nanoscale Research Letters 14(1): DOI: 10.1186/s11671-019-3045-4.
  26. [26] X. Qiao, S. Liao, G. Wang, R. Zheng, H. Song, and X. Li, (2016) “Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: A highly active metal-free electrocatalyst for oxygen reduction" Carbon 99: 272 279. DOI: https://doi.org/10.1016/j.carbon.2015.12.034.
  27. [27] Y. Liu, Q. Feng, Q. Xu, M. Li, N. Tang, and Y. Du, (2013) “Synthesis and photoluminescence of F and N co doped reduced graphene oxide" Carbon 61: 436–440. DOI: https://doi.org/10.1016/j.carbon.2013.05.027.
  28. [28] G. S. S. Mamaril, M. D. G. de Luna, K. Bindumadha van, D. C. Ong, J. A. I. Pimentel, and R. A. Doong, (2021) “Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions" Separation and Purification Technology 272: 117559. DOI: 10.1016/j.seppur.2020.117559.
  29. [29] N. P. D. Ngidi, E. Muchuweni, and V. O. Nyamori, (2021) “Dual heteroatom-doped reduced graphene oxide and its application in dye-sensitized solar cells" Optical Materials 122: 111689. DOI: https://doi.org/10.1016/j.optmat.2021.111689
  30. [30] X. Liu, Z. Lu, X. Huang, J. Bai, C. Li, C. Tu, and X. Chen, (2021) “Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid and all-solid-state supercapacitors" Journal of Power Sources 516: 230682. DOI: https://doi.org/10.1016/j.jpowsour.2021.230682.
  31. [31] S. Surya, A. Pandurangan, and R. Govindaraj, (2024) “Electrochemical investigation of phosphorous and boron heteroatoms incorporated reduced graphene oxide electrode material for supercapacitor applications" Journal of Energy Storage 86: 111319. DOI: https://doi.org/10.1016/j.est.2024.111319.
  32. [32] K. S. Rawat, C. Tewari, T. Arya, Y. N. Kim, P. Pant, S. Sati, S. Dhali, P. B. Negi, Y. C. Jung, and N. G. Sahoo, (2025) “Development of nitrogen and phosphorus dual-doped reduced graphene oxide from waste plastic for supercapacitor applications: Comparative electrochemical  performance in different electrolytes" Next Energy 6: 100209. DOI: https://doi.org/10.1016/j.nxener.2024.100209.
  33. [33] P. B. Arthi G and L. BD, (2015) “A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial" Journal of Nanomedicine &Nanotechnology06(01): 1–4. DOI: 10.4172/2157-7439.1000253.
  34. [34] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, and C. H. Voon, (2017) “Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence" Procedia Engineering 184: 469–477. DOI: 10.1016/j.proeng.2017.04.118.
  35. [35] S. Thoufeeq, P. K. Rastogi, N. Sreekanth, M. M. R. I. Anantharaman, and T. N. Narayanan, (2018) “Nickel reduced graphene oxide composite foams for electrochemical oxidation processes: towards biomolecule sensing" MRS Communications 8(3): 695–702. DOI: DOI:10.1557/mrc.2018.123.
  36. [36] X. Lin, Y. Ni, and S. Kokot, (2012) “Voltammetric analysis with the use of a novel electro-polymerised graphene nafionfilm modified glassy carbon electrode: Simultane ous analysis of noxious nitroaniline isomers" Journal of Hazardous Materials 243: 232–241. DOI: https://doi.org/10.1016/j.jhazmat.2012.10.026
  37. [37] Q. He, J. Liu, X. Liu, G. Li, D. Chen, P. Deng, and J. Liang, (2018) “Fabrication of Amine-Modified Magnetite Electrochemically Reduced Graphene Oxide Nanocomposite Modified Glassy Carbon Electrode for Sensitive Dopamine Determination" Nanomaterials 8(4): DOI: 10.3390/nano8040194.
  38. [38] D. Sánchez-Campos, V. Rodríguez-Lugo, F. C. Sánchez-Vargas, D. Mendoza-Anaya,E.S.Rodríguez, L. E. Alarcón, and M. I. Reyes-Valderrama, (2020) “Simple process and uncomplicated reduction of graphene oxide" Materials Chemistry and Physics 242: 122325. DOI: https://doi.org/10.1016/j.matchemphys.2019.122325
  39. [39] A. Nugroho, F. Erviansyah, D. Floresyona, S. Mahalingam, A. Manap, N. Afandi, K. S. Lau, and C. H. Chia, (2022) “Synthesis and Characterization NS Reduced Graphene Oxide Hydrogel and Its Electrochemical Properties" Letters on Materials 12(2): 169–174. DOI: 10.22226/2410-3535-2022-2-169-174.
  40. [40] K. Kakaei and A. Balavandi, (2017) “Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode" Journal of Colloid and Interface Science 490: 819–824. DOI: https://doi.org/10.1016/j.jcis.2016.12.011.
  41. [41] A. Alkhouzaam, H. Abdelrazeq, M. Khraisheh, F. AlMomani, B. H. Hameed, M. K. Hassan, M. A. Al Ghouti, and R. Selvaraj. Spectral and Structural Proper ties of High-Quality Reduced Graphene Oxide Produced via a Simple Approach Using Tetraethylenepentamine. 2022. DOI: 10.3390/nano12081240.
  42. [42] U. Chasanah, W. Trisunaryanti, T. Triyono, H. Okta viano, I. Santoso, and D. Fatmawati, (2022) “Study of green reductant effects of highly reduced graphene ox ide production and their characteristics" Communications in Science and Technology 7: 103–111. DOI: 10.21924/cst.7.2.2022.906.
  43. [43] R. Paul, F. Du, L. Dai, Y. Ding, Z. L. Wang, F. Wei, and A. Roy, (2019) “3D Heteroatom-Doped Carbon Nanomaterials as Multifunctional Metal-Free Catalysts for Inte grated Energy Devices" Advanced Materials 31(13): 1805598. DOI: https://doi.org/10.1002/adma.201805598.
  44. [44] V. Wardani, L. Rohmawati, W. Setyarsih, D. Alfarisi, and A. Subhan, (2020) “Analysis of Charging/Discharging Supercapacitor Active Carbon/rGO Based on Natural Materials" Journal of Physics: Conference Series 1491(1): 12044. DOI: 10.1088/1742-6596/1491/1/012044.
  45. [45] Q. Liu, Q. Shi, H. Wang, Q. Zhang, and Y. Li, (2015) “Laser irradiated self-supporting and flexible 3-dimentional graphene-based film electrode with promising electrochemical properties" RSC Advances 5(58): 47074–47079. DOI: 10.1039/C5RA08431H.