- [1] Q. Zhang, Z. Ma, P. Zhang, and E. Jenelius, (2025) “Mobility knowledge graph: review and its application in public transport"Transportation52(3):1119–1145. DOI:10.1007/s11116-023-10451-8.
- [2] S.Tsaneva,D.Dessı,F.Osborne,andM.Sabou,(2025) “Knowledge graph validation by integrating LLMs and human-in-the-loop "Information Processing & Management 62(5):104145.DOI:10.1016/j.ipm.2025.104145.
- [3] X. Sha, J. Wang, X. Xu,and J. Ding, “Interdependent path Recurrent Embedding For Knowledge Graph-aware Recommendation "Journal of Applied Science and Engineering29(3):531–543.DOI:10.6180/jase.202603_29(3).0004.
- [4] S. Yin and A. A. Laghari, (2024)“Multi-branch Collaboration Based Person Re-identification "IFS/ACM Transactions on Machine Learning1(1):19–24.DOI: 10.70891/JSE.2024.100013.
- [5] C.Zhao,G.So,andR.Chen, “Knowledge Graph Representation Learning Model Based On Capsule Network And Information Fusion "Journal of Applied Science and Engineering29(1):89–101.DOI:10.6180/jase.202601_29(1).0009.
- [6] Z. Deng, W. Ma, Q. -L. Han, W. Zhou, X. Zhu, S. Wen, and Y. Xiang, (2025)“ExploringDeepSeek:A Survey on Advances, Applications, Challenges and Future Directions" IEEE/CAA Journal of Automatica Sinica 12(5): 872–893. DOI: 10.1109/JAS.2025.125498.
- [7] D. M. Katz, M. J. Bommarito, S. Gao, and P. Arredondo, (2024) “Gpt-4 passes the bar exam" Philosophical Transactions of the Royal Society A 382(2270): 20230254. DOI: 10.1098/rsta.2023.0254.
- [8] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang, Y. Wang, et al., (2024) “A survey on evaluation of large language models" ACM transactions on intelligent systems and technology 15(3): 1–45. DOI: 10.1145/3641289.
- [9] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, et al., (2023) “Large language models encode clinical knowledge" Nature 620(7972): 172–180. DOI: 10.1038/s41586-023-06291-2.
- [10] J. G. Meyer, R. J. Urbanowicz, P. C. Martin, K. O’Connor, R. Li, P.-C. Peng, T. J. Bright, N. Tatonetti, K. J. Won, G. Gonzalez-Hernandez, et al., (2023) “ChatGPT and large language models in academia: op portunities and challenges" Bio Data mining 16(1): 20. DOI: 10.1186/s13040-023-00339-9.
- [11] G. Tong, D. Li, and X. Liu, (2024) “An improved model combining knowledge graph and GCN for PLM knowledge recommendation" Soft Computing 28(6): 5557–5575. DOI: 10.1007/s00500-023-09340-0.
- [12] X. Gu, M. Chen, Y. Lin, Y. Hu, H. Zhang, C. Wan, Z. Wei, Y. Xu, and J. Wang, (2025) “On the effectiveness of large language models in domain-specific code generation" ACM Transactions on Software Engineering and Methodology 34(3): 1–22. DOI: 10.1145/3697012.
- [13] A. Nakhaee, D. Elshani, and T. Wortmann. “A vision for automated building code compliance check ing by unifying hybrid knowledge graphs and large language models”. In: Design Modelling Symposium Berlin. Springer. 2024, 445–457. DOI: 10.1007/978-3-031-68275-9_36.
- [14] E. Bugliarello, R. Cotterell, N. Okazaki, and D. El liott, (2021) “Multimodal pretraining unmasked: A meta analysis and a unified framework of vision-and-language BERTs" Transactions of the Association for Computational Linguistics 9: 978–994. DOI: 10.1162/tacl_a_00408.
- [15] J. Yu, L. Zhao, S. Yin, and M. Ivanovi´c, (2024) “News recommendation model based on encoder graph neural net work and bat optimization in online social multimedia art education" Computer Science and Information Systems 21(3): 989–1012. DOI: 10.2298/CSIS231225025Y.
- [16] L. Chen, C. Huang, X. Zheng, J. Lin, and X.-J. Huang. “Table VLM: multi-modal pre-training for table structure recognition”. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2023, 2437–2449. DOI: 10.18653/v1/2023.acl-long.137.
- [17] Z. Hu, X. Li, X. Pan, S. Wen, and J. Bao, (2025) “A question answering system for assembly process of wind turbines based on multi-modal knowledge graph and large language model" Journal of engineering design 36(7 9): 1093–1117. DOI: 10.1080/09544828.2023.2272555.
- [18] K. Ahrabian, X. Du, R. D. Myloth, A. B. S. Anan than, and J. Pujara, (2023) “PubGraph: A Large Scale Scientific Knowledge Graph" arXiv preprint arXiv:2302.02231: DOI: 10.48550/arXiv.2302.02231.
- [19] S. Marchesin, G. Silvello, and O. Alonso. “Utility Oriented Knowledge Graph Accuracy Estimation with Limited Annotations: A Case Study on DBpe dia”. In: Proceedings of the AAAI Conference on Hu man Computation and Crowdsourcing. 12. 2024, 105 114. DOI: 10.1609/hcomp.v12i1.31605.
- [20] G. Sharma, V. Tripathi, and V. Saingh, (2023) “An efficient development framework for the generation of a local knowledge graph" Recent Advances in Sciences, Engineering, Information Technology & Management 2782(1): 020092. DOI: 10.1063/5.0154305.
- [21] W. Li, Y. Guo, B. Wang, and B. Yang, (2023) “Learning spatiotemporal embedding with gated convolutional recurrent networks for translation initiation site prediction" Pattern Recognition 136: 109234. DOI: 10.1016/j.patcog.2022.109234.
- [22] T. Fan, H. Wang, and T. Hodel, (2023) “CICHMKG: a large-scale and comprehensive Chinese intangible cultural heritage multimodal knowledge graph" Heritage Science 11(1): 115. DOI: 10.1186/s40494-023-00927-2.
- [23] G. Zhang, H. Li, S. Li, B. Wang, and Z. Ding, (2024) “MMKG-PAR: multi-modal knowledge graphs-based personalized attraction recommendation" Sustainability 16(5): 2211. DOI: 10.3390/su16052211.
- [24] J. Zhang, J. C. F. Chan, Z. Zhao, and J. C. Cheng. “Heritage Building Information Management and Intelligent Querying by Multimodal Large Language Models and Knowledge Graph”. In: Proceedings of The Sixth International Confer. 22. 2025, 570–577. DOI: 10.29007/t5sx.