Mohamed Eisa1This email address is being protected from spambots. You need JavaScript enabled to view it., J.L. Conradie2, C. Mtshali3, N. Mongwaketsi3, and M. Maaza3,4
1Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
2iThemba LABS-National Research Foundation, Accelerator Department, P.O. Box 722, Somerset West 7129, Cape Town, South Africa
3Materials Research Department, P.O. Box 722, Somerset West 7129, Cape Town, South Africa
4UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria 0003, South Africa.
Received: May 22, 2025 Accepted: August 15, 2025 Publication Date: December 28, 2025
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
In the study we report the features and ideal stable operating conditions of the ion source and the accelerator’s beam behavior of a nuclear microprobe at a laboratory for accelerator-based science (LABS) laboratory, i.e., iThemba LABS, South Africa. Since the aim is to improve the reliability and stability of ion beams used as a probe, we optimize the beam characteristics along the Van de Graaff accelerator from the ion source through the accelerator. Higher-order aberrations and non-ideal magnetic field profiles can induce complexities in beam deformation that are frequently missed by conventional first-order linear approximations. Moreover, the complicated nature and time commitment of trial-and-error methods make experimental adjustment alone inadequate. To accurately model and optimize the transport and focus characteristics of the ion beam, including effects from non-linear field components, dispersion, and alignment errors, a thorough mathematical framework is therefore required, backed by simulation tools such as TRANSPORT, TOSCA, and IGUN.
Keywords: beamline; emittance; beam intensity; ion source; microprobe; magnetic field
[1] M.Szilagyi, (1981) “A novel Approach to Beam Optics Design for Particle Accelerators" Particle Accelerators 1: 213–217.
[2] S. Marini, D. F. G. Minenna, F. Massimo, L. Batista, V. Bencini, A. Chancé,N.Chauvin,S.Doebert,J.Farmer, E. Gschwendtner, L. Moulanier, P. Muggli, D. Uriot, B. Cros, and P. Nghiem, (2024) “Beam physics studies for a high charge and high beam quality laser-plasma accelerator" Physical Review Accelerators and Beams 27(063401): 1–15. DOI: 10.1103/PhysRevAccelBeams.27.063401.
[3] B. Hermann et al., (2021) “Electron beam transverse phase space tomography using nanofabricated wire scanners with submicrometer resolution" Physical Review Accelerators and Beams 24(2): 022802. DOI: 10.1103/PhysRevAccelBeams.24.022802.
[4] A. E. Stuchbery, (1996) “Beam optics design for the ANU linear booster accelerator" Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 382: 172–175.
[5] G. Herbert, P. Charles, and L. S. John. Classical Mechanics, 3rd ed. India: Dorling Kindersley, 2005. Chap. 1.
[6] Z. Dimitrovová and T. Mazilu, (2024) “Semi Analytical Approach and Green’s Function Method: A Comparison in the Analysis of the Interaction of a Moving Mass on an Infinite Beam on a Three-Layer Viscoelastic Foundation at the Stability Limit–The Effect of Damping of Foundation Materials" Materials 17: 279. DOI: 10.3390/ma17020279.
[7] B. Nikolic, C. L. Carilli, and L. Torino, (2024) “Two dimensional synchrotron beam characterization from a single interferogram" Physical Review Accelera tors and Beams 27(11): 112802. DOI: 10 . 1103 / PhysRevAccelBeams.27.112802.
[8] H. Jia, T. Li, T. Wang, Y. Zhao, X. Zhang, H. Xu, Z. Liu, J. Liu, L. Lin, H. Xie, L. Feng, F. Wang, F. Zhu, J. Hao, S. Quan, K. Liu, and S. Huang, (2024) “High brightness megahertz-rate beam from a direct-current and superconducting radio-frequency combined photocathode gun" Physical Review Research 6: 043165. DOI: 10.1103/PhysRevResearch.6.043165.
[9] Y.LeGuennecandE.Savin, (2011) “A transport model and numerical simulation of the high-frequency dynamics of three-dimensional beam trusses" Journal of the Acoustical Society of America 130(6): 3706. DOI: 10.1121/1.3651819.
[10] K. L. Brown, F. Rothacker, D. C. Carey, and F. Na tional. Beam TRANSPORT Systems. Tech. rep. Report issued as CERN-80-04andNAL-Q1.CERNandNAL, 1983.
[11] S. Bernal. A Practical Introduction to Beam Physics and Particle Accelerators, 3rd ed. IOP Publishing, 2022.
[12] R. Roussel, (2021) “Multiobjective Bayesian optimization for online accelerator tuning" Physical Review Accelerators and Beams 24(6): 062801. DOI: 10.1103/PhysRevAccelBeams.24.062801.
[13] A. G. Shkvarunets and R. B. Fiorito, (2008) “Vector electromagnetic theory of transition and diffraction radiation with application to the measurement of longitudinal bunch size" Physical Review Special Topics Accelerators and Beams 11: 012801. DOI: 10.1103/PhysRevSTAB.11.012801.
[15] R. Singh, (2022) “Longitudinal charge distribution measurement of nonrelativistic ion beams using coherent transition radiation" Physical Review Accelerators and Beams 25(3): 032801. DOI: 10.1103/PhysRevAccelBeams.25.032801.
[16] S. A. Khan and R. Jagannathan, (2024) “New matrix representation of the Maxwell equations based on the Riemann-Silberstein-Weber vector for a linear in homogeneous medium" Results in Optics 17: 100747. DOI: 10.1016/j.rio.2024.100747.
[17] S. M. Barnett, M. Babiker, M. J. Padgett, and S. M. Barnett, (2017) “Optical orbital angular momentum Subject Areas" Philosophical Transactions of the Royal Society A 375: 20150444. DOI: 10.1103/PhysRevA.45. 8185.
[18] W. K. Kahn. Mathematical methods of physics. Brooklyn, N.Y, 2016. Chap. 5.
[19] Z. Slawomir and D. Leszek, (2014) “Mathematical Model of the Damped Variable Cross Section Beam in Transportation" Advanced Materials Research 837: 517–522. DOI: 10.4028/www.scientific.net/AMR.837.517.
[20] G. Ha, J. G. Power, E. E. Wisniewski, W. Liu, and M. Conde, (2021) “Single-shot measurement of transverse second moments using the projection method" Physical Review Accelerators and Beams 24(1): 012802. DOI: 10.1103/PhysRevAccelBeams.24.012802.
[21] N. J. Sammut, L. Bottura, P. Bauer, G. Velev, T. Pieloni, andJ. Micallef, (2007) “Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. II. Dynamic field changes and scaling laws" Physical Review Special Topics- Accelerators and Beams 10(8): 082802. DOI: 10.1103/ PhysRevSTAB.10.082802.
[22] D. Golish. Gaussian Beam Optics. 2006.
[23] A. A. Fakhri, P. Kant, G. Singh, and A. D. Ghodke, (2015) “An analytical study of double bend achromat lattice" Review of Scientific Instruments: 033304:1–11. DOI: 10.1063/1.4914389.
[24] L. E. L. D. Oskolovich, D. M. A. B. Bykov, A. A. L. Albert, M. Ingazov, and E. V. A. B. Abezus, (2019) “Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions" Optics Ex press 27(9): 13083–13097. DOI: 10.1364/OE.27.013083.
[25] R. Hessami and S. Gessner, (2023) “Compact source of positron beams with small thermal emittance" Physical Review Accelerators and Beams 26(12): 123402. DOI: 10.1103/PhysRevAccelBeams.26.123402.
[26] D. L. Knies, K. S. Grabowski, and C. Cetina, (2007) “Ion optic calculations and installation of a modified SIMS ion source" Nuclear Instruments and Methods in Physics Research B 259(1): 118–122. DOI: 10.1016/j.nimb.2007.01.150.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.