Xianhui YanThis email address is being protected from spambots. You need JavaScript enabled to view it., Yuanyuan Hu, Hui Tang, and Daibing Cheng

Civil Engineering and Architecture Engineering College, Nanchong Vocational and Technical College, Nanchong 637131, Sichuan, China


 

Received: May 12, 2025
Accepted: July 30, 2025
Publication Date: September 13, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202605_29(5).0011  


The main goal of engineering training is to create secure, reliable structures that are simple to design and evaluate using straightforward analytical methods. Consequently, a standard design method assumes that one is familiar with all fundamental structural typologies and then chooses the one that best meets the presumptive requirements. Nevertheless, Advances in computer modeling enable progress, yet shear load distribution in reinforced concrete beams with stirrups remains unclear. This work used artificial intelligence (AI) models to avoid these cognitive constraints. The present study introduces a data-driven machine learning methodology utilizing Random Forests Regression (RFR) in conjunction with the Pufferfish optimization algorithm (named RFPu) and Red-tailed Hawk optimization models(named RFRe), for forecasting the shear strength (Pu) capacity of medium-to ultra-high-strength concrete beams featuring longitudinal reinforcement and vertical stirrups. A database that comprises 315 experimental data points from studies is employed for the reason of calculate the nine input elements for the Pu. This is done to accomplish the objective of computing the Pu. Given the available information, it is likely that both RFPu and RFRe will compute Pu correctly. Throughout the training and evaluation, the RFPu model’s good functional dependability was proved by the R2 (0.97309 and 0.96698). With learning and assessment values of 20.9673 and 27.9776, respectively, the RFPu produced the smallest results on the RMSEmeasure.


Keywords: Beam: Stirrup-reinforcement; Ultimate Shear strength; Ensembled models; PAWN methodology


  1. [1] A.C.I. Committee. “Building code requirements for structural concrete (ACI 318-08) and commentary”. In: American Concrete Institute, 2008.
  2. [2] A.Ahmad,N.D.Lagaros,andD.M.Cotsovos,(2021) “Neural network-based prediction: The case of reinforced concrete members under simple and complex loading" Ap plied Sciences 11: 4975. DOI: 10.3390/app11114975.
  3. [3] S. Talatahari, V. P. Singh, A. H. Alavi, and F. Kang, (2015) “Soft computing methods in civil engineering" The Scientific World Journal 2015: 605871. DOI: 10.1155/2015/605871.
  4. [4] B. Z. Dehkordi, R. Abdipour, S. Motaghed, A. K. Charkh, H. Sina, and M. S. S. Zad, (2012) “Reinforced concrete frame failure prediction using neural network algorithm" Journal of Applied Sciences 12: 498–501. DOI: 10.3923/jas.2012.498.501.
  5. [5] M. D. Kotsovos, (2013) “Compressive force-path method" Switzerland: Springer: DOI: 10.1007/978-3 319-00488-4.
  6. [6] Y. O. Özkılıç, C. Aksoylu, and M. H. Arslan, (2021) “Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins" Journal of Building Engineering 36: 102119. DOI: 10.1016/j.jobe.2020.102119.
  7. [7] G. Balaji and R. Vetturayasudharsanan, (2020) “Experimental investigation on flexural behaviour of RC hollow beams" Materials today: proceedings 21: 351–356. DOI: 10.1016/j.matpr.2019.05.461.
  8. [8] G. Quaranta, D. D. Domenico, and G. Monti, (2022) “Machine-learning-aided improvement of mechanics-based code-conforming shear capacity equation for RC elements with stirrups" Engineering Structures 267: 114665. DOI: 10.1016/j.engstruct.2022.114665.
  9. [9] G. Danying and Z. Changhui, (2020) “Shear strength prediction model of FRP bar-reinforced concrete beams without stirrups" Math. Probl. Eng 1: DOI: 10.1155/2020/7516502.
  10. [10] K. L. Nguyen, H. T. Trinh, T. T. Nguyen, and H. D. Nguyen, (2023) “Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications" Expert Systems with Applications 230: 120649. DOI: 10.1016/j.eswa.2023.120649.
  11. [11] H.Ketabdari,F.Karimi,andM.Rasouli,(2020)“Shear strength prediction of short circular reinforced-concrete columns using soft computing methods" Advances in Structural Engineering 23: 3048–3061. DOI: 10.1177/1369433220927270.
  12. [12] A. Tabrizikahou, G. Pavi´c, Y. Shahsavani, and M. Hadzima-Nyarko, (2024) “Prediction of reinforced concrete walls shear strength based on soft computing-based techniques" Soft computing 28: 8731–8747. DOI: 10.1007/s00500-023-08974-4.
  13. [13] S. Alzabeebee, R. K. S. Al-Hamd, A. Nassr, M. Ka reem, and S. Keawsawasvong, (2023) “Multiscale soft computing-based model of shear strength of steel fibre reinforced concrete beams" Innovative Infrastructure Solutions 8: 63. DOI: 10.1007/s41062-022-01028-y.
  14. [14] N. S. Hamzehkolaei and M. S. Barkhordari, (2025) “Hybrid soft computing-based predictive models for shear strength of exterior reinforced concrete beam-column joints" Multiscale and Multidisciplinary Modeling, Experiments and Design 8: 29. DOI: 10.1007/s41939-024-00608-y.
  15. [15] F.N.SwamyandA.Sa’ad,(1981)“Deformation and ultimate strength in flexure of reinforced" ACI JOURNAL: DOI: 10.14359/10525.
  16. [16] A.K.Sharma.“Shearstrengthofsteelfiberreinforced concrete beams”. In: Journal Proceedings. 83. 1986, 624 628. DOI: 10.14359/10559.
  17. [17] E.J. TomposandR.J.Frosch, (2002) “Influence of beam size, longitudinal reinforcement, and stirrup effectiveness on concrete shear strength" Structural Journal 99: 559–567. DOI: 10.14359/12295.
  18. [18] F. J. Vecchio and W. Shim, (2004) “Experimental and analytical reexamination of classic concrete beam tests" Journal of Structural Engineering 130: 460–469. DOI: 10.1061/(ASCE)0733-9445(2004)130:3(460).
  19. [19] Y. TANIMURA, T. SATO, T. WATANABE, and S. MATSUOKA,(2004)“Shearstrength of deep beams with stirrups" Doboku Gakkai Ronbunshu 2004: 29–44. DOI: 10.2208/jscej.2004.760_29.
  20. [20] J.-Y. Lee, H.-B. Hwang, and J.-H. Doh, (2012) “Effective strain of RC beams strengthened in shear with FRP" Composites Part B: Engineering 43: 754–765. DOI: 10.1016/j.compositesb.2011.11.050.
  21. [21] C. F. Scribner and J. K. Wight, (1980) “Strength decay in R/C beams under load reversals" Journal of the Structural Division 106: 861–876. DOI: 10.1061/JSDEAG.0005402.
  22. [22] C. K. Nmai andD.Darwin. Cyclic behavior of lightly reinforced concrete beams. 1984.
  23. [23] D.-Y. Yoo and J.-M. Yang, (2018) “Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams" Cement and Concrete Composites 87: 137–148. DOI: 10.1016/j.cemconcomp.2017.12.010.
  24. [24] K. N. Rahal and Y. T. Alrefaei, (2018) “Shear strength of recycled aggregate concrete beams containing stirrups" Construction and Building Materials 191: 866–876. DOI: 10.1016/j.conbuildmat.2018.10.023.
  25. [25] M. Wu,F. Yuan, S. Guo, W. Li, G. Chen, Y. Zhou, Z. Huang, and X. Yang. “Experimental investigation of the shear behaviour of concrete beams with CFRP strip stirrups under static and fatigue loading”. In: Structures. 41. Elsevier, 2022, 1602–1615. DOI: 10.1016/j.istruc.2022.05.081.
  26. [26] G. M. Chen, J. G. Teng, J. F. Chen, and O. A. Rosen boom, (2010) “Interaction between steel stirrups and shear-strengthening FRP strips in RC beams" Journal of Composites for Construction 14: 498–509. DOI: 10.1061/(ASCE)CC.1943-5614.0000120.
  27. [27] G. Fathifazl, A. G. Razaqpur, O. B. Isgor, A. Abbas, B. Fournier, and S. Foo, (2010) “Shear strength of rein forced recycled concrete beams with stirrups" Magazine of ConcreteResearch62:685–699. DOI:10.1680/macr. 2010.62.10.685.
  28. [28] P. Colajanni, L. L. Mendola, G. Mancini, A. Recupero, and N. Spinella, (2014) “Shear capacity in concrete beams reinforced by stirrups with two different inclinations" Engineering Structures 81: 444–453. DOI: 10.1016/j.engstruct.2014.10.011.
  29. [29] D. Angelakos, E. C. Bentz, and M. P. Collins, (2001) “Effect of concrete strength and minimum stirrups on shear strength of large members" Structural Journal 98: 291300. DOI: 10.14359/10220.
  30. [30] J. M. Gilstrap, C. R. Burke, D. M. Dowden, and C. W. Dolan, (1997) “Development of FRP reinforcement guidelines for prestressed concrete structures" Journal of Composites for Construction 1: 131–139. DOI: 10.1061/(ASCE)1090-0268(1997)1:4(131).
  31. [31] A. F. Ashour, (2000) “Shear capacity of reinforced concrete deep beams" Journal of Structural Engineering 126: 1045–1052. DOI: 10.1061/(ASCE)0733-9445(2000) 126:9(1045).
  32. [32] L.-j. Hou, S. Xu, X.-f. Zhang, and D. Chen, (2014) “Shear behaviors of reinforced ultrahigh toughness cementitious composite slender beams with stirrups" Journal of materials in civil engineering 26: 466–475. DOI: 10.1061/(ASCE)MT.1943-5533.0000833.
  33. [33] F. F. Wafa, S. A. Shihata, S. A. Ashour, and A. A. Akhtaruzzaman, (1995) “Prestressed high-strength concrete beams under torsion" Journal of Structural Engineering 121: 1280–1286. DOI: 10.1061/(ASCE)0733 9445(1995)121:9(1280).
  34. [34] S. Ahmad, F. Park, and K. El-Dash, (1995) “Web reinforcement effects on shear capacity of reinforced high strength concrete beams" Magazine of Concrete Re search 47: 227–233. DOI: 10.1680/macr.1995.47.172.227.
  35. [35] Y. Sonobe, H. Fukuyama, T. Okamoto, N. Kani, K. Kimura, K. Kobayashi, Y. Masuda, Y. Matsuzaki, S. Mochizuki, and T. Nagasaka, (1997) “Design guide lines of FRP reinforced concrete building structures" Journal of composites for Construction 1: 90–115. DOI: 10.1061/(ASCE)1090-0268(1997)1:3(90).
  36. [36] I.-Y. Jang, H.-G. Park, Y.-G. Kim, S.-S. Kim, and J.-H. Kim, (2009) “Flexural behavior of high-strength concrete beams confined with stirrups in pure bending zone" International Journal of Concrete Structures and Materials 3: 39–45. DOI: 10.4334/IJCSM.2009.3.1.039.
  37. [37] T.Y.Lim,P.Paramasivam,andS.L.Lee,(1987)“Shear and moment capacity of reinforced steel-fibre-concrete beams" Magazine of concrete research 39: 148–160. DOI: 10.1680/macr.1987.39.140.148.
  38. [38] W. J. Krefeld and C. W. Thurston. “Studies of the shear and diagonal tension strength of simply sup ported reinforced concrete beams”. In: Journal Pro ceedings. 63. 1966, 451–476. DOI: 10.14359/7633.
  39. [39] G. Campione and M. L. Mangiavillano, (2008) “Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations" Engineering structures 30: 2970–2980. DOI: 10.1016/j.engstruct.2008.04.019.
  40. [40] A. Biddah, A. Ghobarah, and T. S. Aziz, (1997) “Up grading of nonductile reinforced concrete frame connections" Journal of Structural Engineering 123: 1001–1010. DOI: 10.1061/(ASCE)0733-9445(1997)123: 8(1001).
  41. [41] A. Miyamoto, A. Nishimura, and H. Ishikawa. “SAFETY EVALUATION AND RESIDUAL LIFE PREDICTIONOFCONCRETEBRIDGES”.In: Elsevier, 1992, 767–772. DOI: 10.1016/B978-0-08-037890-9.50520-2.
  42. [42] M. J. Haddadin,S.-T.Hong,andA.H.Mattock,(1971) “Stirrup effectiveness in reinforced concrete beams with axial force" Journal of the Structural Division 97: 2277–2297. DOI: 10.1061/JSDEAG.0002996.
  43. [43] S. Ferahtia, A. Houari, H. Rezk, A. Djerioui, M. Machmoum, S. Motahhir, and M. Ait-Ahmed, (2023) “Red tailed hawk algorithm for numerical optimization and real-world problems" Scientific Reports 13: 12950. DOI: 10.1038/s41598-023-38778-3.