- [1] J.LiandJ.Wang,(2019)“Comprehensiveutilizationand environmental risks of coal gangue: A review "Journal of Cleaner Production 239:117946.
- [2] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, andC. I. Sánchez, (2017)“A survey on deep learning in medical image analysis "Medicalimage analysis42:60–88.
- [3] H. Jin,C.Yu,Z.Gong,R.Zheng,Y.Zhao,andQ. Fu,(2023)“Machine learning techniques for pulmonary no dule computer-aided diagnosis using CT images: Asystematic review "Biomedical Signal Processing and Control79:104104.
- [4] R. U. Modi, M. Kancheti, A. Subeesh, C. Raj,A.K. Singh, N. S. Chandel, A. S. Dhimate, M. K. Singh, andS.Singh,(2023)“An automated weed identification framework for sugarcanecrop: a deep learning approach" CropProtection173:106360.
- [5] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, (2021)“Deep learning for object detection and sceneperception in selfdriving cars: Survey, challenges, and open issues"Array10:100057.
- [6] R. Ameri, C. -C. Hsu, and S. S. Band, (2024) “A system aticreview of deep learning approaches for surface defect detection in industrial applications "Engineering Applications of Artificial Intelligence 130: 107717.
- [7] Y.Gao,J.Lin,J.Xie,andZ.Ning,(2020)“Areal-time defect detection method for digital signal processing of industrial inspection applications "IEEE Transactions on Industrial Informatics17(5): 3450–3459.
- [8] J. Redmon and A. Farhadi,(2018)“Yolov3:Anincre mental improvement "arXiv preprintarXiv:1804.02767:
- [9] A. Bochkovskiy, C. -Y. Wang, and H. -Y. M. Liao,(2020) “Yolov4: Optimal speed and accuracy of object detection" arXivpreprintarXiv:2004.10934:
- [10] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, etal.,(2022)“YOLOv6:A single-stage object detection frame work for industrial applications "arXivpreprintarXiv: 2209.02976:
- [11] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, etal.,(2024)“Yolov10:Real-timeend-to-endobjectdetection"Advances in Neural Information Processing Systems37:107984–108011.
- [12] Z. Lv, Y. Fan, T. Sha, Y. Cui, Y. Wu, H. Lv, M. Sun, Y. Tu, Z. Xu, and W. Wang,(2025)“Alarge-scaleopen imaged at a set for deep learning-enabled intelligent sorting andanalyzingofrawcoal"ScientificData12(1):403. DOI:10.1038/s41597-025-04719-0.
- [13] R. Li, L. Zhao, H. Wei, G. Hu, Y. Xu, B. Ouyang, and J.Tan, (2025)“Multi-defect type beam bridged at a set: GYU-DET"ScientificData12(1):1101.DOI:10.1038/s41597-025-05395-w.
- [14] Z. Liu, Y. Wang, L. Ma, Y. Wu, G. He, X. Liang, and F. Wang,(2025)“CUs-YOLO:enhancedfeaturefusion model for coal and gangue recognition in complex environment of coal mine "Measurement Science and Technology36(6):065012.
- [15] X.WEI,F.WANG,D.HE,C.LIU,andD.XU,(2024) “Coalgangue image recognition model based on CSP Net YOLOv7 target detection algorithm "Coal Science and Technology52(S1): 238–248.
- [16] N. Li, K. Qin, X. Li, andA.Zhang,(2025)“AYOLOv7 based coal and gangue recognition model integrating super-resolution reconstruction" Computer Engineering and Applications 61(15): 343–352.
- [17] R. Khanam and M. Hussain, (2024) “Yolov11: An overview of the key architectural enhancements" arXiv preprint arXiv:2410.17725:
- [18] X. Zhao, W. Zhang, H. Zhang, C. Zheng, J. Ma, and Z. Zhang, (2024) “ITD-YOLOv8: An infrared target detection model based on YOLOv8 for unmanned aerial vehicles" Drones 8(4): 161.
- [19] Y. Ge, Z. Li, and L. Meng, (2025) “YOLO-MSD: a robust industrial surface defect detection model via multi scale feature fusion" Applied Intelligence 55(12): 1 18.
- [20] W. Lv, S. Xu, Y. Zhao, G. Wang, J. Wei, C. Cui, Y. Du, Q. Dang, and Y. Liu, (2023) “Detrs beat yolos on real-time object detection" CoRR:
- [21] H. Shen, Z. Wang, J. Zhang, and M. Zhang, (2024) “L-Net: A lightweight convolutional neural network for de vices with low computing power" Information Sciences 660: 120131.
- [22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. “Feature pyramid networks for ob ject detection”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 2117 2125.
- [23] K. Han, Y. Wang, J. Guo, and E. Wu, (2023) “Param eterNet: Parameters are all you need" arXiv preprint arXiv:2306.14525:
- [24] Z. Yu, H. Huang, W. Chen, Y. Su, Y. Liu, and X. Wang, (2024) “Yolo-facev2: A scale and occlusion aware face detector" Pattern Recognition 155: 110714.
- [25] Z. Cao, L. Fang, Z. Li, and J. Li, (2023) “Lightweight target detection for coal and gangue based on improved Yolov5s" Processes 11(4): 1268.
- [26] Y. Sui, L. Zhang, Z. Sun, W. Yi, and M. Wang, (2024) “Research on Coal and Gangue Recognition Based on the Improved YOLOv7-Tiny Target Detection Algorithm" Sensors 24(2): 456.
- [27] D. Shang, Z. Lv, Z. Gao, and Y. Li, (2025) “Detection of coal gangue by YOLO deep learning method based on channel pruning" International Journal of Coal Preparation and Utilization 45(1): 231–243.
- [28] H. Zhang and K. Ogasawara, (2023) “Grad-CAM based explainable artificial intelligence related to medical text processing" Bioengineering 10(9): 1070.