Erry Dwi Kurniawan1This email address is being protected from spambots. You need JavaScript enabled to view it., Reni Dwi Putri2, Widhya Budiawan1, Shobih1, Iqbal Syamsu1, and Irzaman Husein2

1Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung, West Java, Indonesia, 40135

2Department of Physics, IPB University, Bogor, Indonesia, 16680


 

Received: August 4, 2025
Accepted: October 23, 2025
Publication Date: November 30, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.2026.26030007  


Perovskite material MAPbI3 solar cells were used because of their capability to respond to light. The transient response characteristics of MAPbI3 perovskite-based solar cell devices with and without SnO2 layer were investigated in this paper. Under the illumination of red, green, and blue light sources, the capacitance measurement was carried out with a variation of series resistor with solar cell devices. To ensure statistical robustness, five identical devices were fabricated and tested for each configuration, and the average values were reported. MAPbI3 perovskite devices with $\text{SnO}_2$ layer show fast responsiveness to variations in light intensity with response time (τ) reduces from 25.7 ms to 13.4 ms that is attributed to the enhanced electric field increases and accelerated accumulation charge. The peak of output voltage Vout, max increases in the dark condition from 0.32 V to 0.53 V, revealing that the SnO2 layer functions as an electron transport layer with a sufficiently wide band gap to facilitate charge separation and accumulation at the electrodes. The highest output voltage of a perovskite solar cell with the SnO2 layer occurs under the illumination of the red light source due to its low-energy photons that allow electron to be excited from valence band to conduction band, thus absorbing photons at high wavelengths. Furthermore, the capacitance (C) of devices with the SnO2 layer decreased from 2.573 μF to 1.342 μF compared to those without the layer. These findings demonstrate that transient response characteristics enable perovskite solar cells with SnO2 layers to function as effective photo-capacitive sensors.


Keywords: Perovskite, Photocapacitor, Solar cell, SnO2layer, Transient response


  1. [1] P. Basumatary and P. Agarwal, (2020) “Photocurrent transient measurements in MAPbI3 thin films" Journal of Materials Science: Materials in Electronics 31(13): 10047–10054. DOI: 10.1007/s10854-020-03549-7.
  2. [2] E. J. Majeed and A. J. Majeed, (2022) “Harvesting Hu man Being Energy to Charge Smartphone" Jordan Journal of Mechanical and Industrial Engineering 16(3): 439–448.
  3. [3] E. J. Majeed and A. J. Majeed, (2024) “Harvesting Hu man Energy to Power Head Torches Using a Thermoelectric Generator" Engineering Proceedings 70(1): DOI: 10.3390/engproc2024070030.
  4. [4] A. J. Majeed, (2023) “Numerical Study for the First Phase of the Miraah Solar Well Plant in Oman" Procedia Structural Integrity 47: 919–931. DOI: 10.1016/j.prostr.2023.07.023.
  5. [5] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Ho-Baillie, (2018) “Solar cell efficiency tables (version 52)" Progress in Photovoltaics: Research and Applications 26(7): 427–436. DOI: 10.1002/pip.3040.
  6. [6] J. G. Labram, E. E. Perry, N. R. Venkatesan, and M. L. Chabinyc, (2018) “Steady-state microwave conductivity reveals mobility-lifetime product in methylammonium lead iodide" Applied Physics Letters 113(15): 153902. DOI: 10.1063/1.5041959.
  7. [7] M. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, (2018) “Recent progress in perovskite solar cells" Renew able and Sustainable Energy Reviews 81: 2812–2822. DOI: 10.1016/j.rser.2017.06.088.
  8. [8] H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, (2013) “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer" Nano Lett. 13(6): 2412–2417. DOI: 10.1021/nl400286w.
  9. [9] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, (2014) “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells" Energy Envi ron. Sci. 7(3): 982–988. DOI: 10.1039/C3EE43822H.
  10. [10] C. Trujillo Herrera and J. G. Labram, (2020) “A perovskite retinomorphic sensor" Appl. Phys. Lett. 117(23): 233501. DOI: 10.1063/5.0030097.
  11. [11] L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, and G. Fang, (2018) “Review on the Application of SnO2 in Perovskite Solar Cells" Advanced Functional Materials 28(35): 1802757. DOI: 10.1002/adfm.201802757.
  12. [12] S. Wheeler, D. Bryant, J. Troughton, T. Kirchartz, T. Watson, J. Nelson, and J. R. Durrant, (2017) “Transient Optoelectronic Analysis of the Impact of Material Energet ics and Recombination Kinetics on the Open-Circuit Volt age of Hybrid Perovskite Solar Cells" J. Phys. Chem. C 121(25): 13496–13506. DOI: 10.1021/acs.jpcc.7b02411.
  13. [13] S. Ravishankar, Z. Liu, U. Rau, and T. Kirchartz, (2022) “Multilayer Capacitances: How Selective Contacts Affect Capacitance Measurements of Perovskite So lar Cells" PRX Energy 1(1): 013003. DOI: 10.1103/ PRXEnergy.1.013003.
  14. [14] S. Morab, M. M. Sundaram, and A. Pivrikas, (2023) “Review on Charge Carrier Transport in Inorganic and Organic Semiconductors" Coatings 13(9): DOI: 10.3390/coatings13091657.
  15. [15] P. Wu, S. Wang, X. Li, and F. Zhang, (2021) “Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications" J. Mater. Chem. A 9(35): 19554–19588. DOI: 10.1039/D1TA04130D.
  16. [16] K. Wang, P. Zeng, J. Zhai, and Q. Liu, (2013) “Electrochromic films with a stacked structure of WO3 nanosheets" Electrochemistry Communications 26: 5–9. DOI: 10.1016/j.elecom.2012.09.037.
  17. [17] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, (2014) “Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes" Applied Physics Express 7(3): 032302. DOI: 10.7567/APEX.7.032302.
  18. [18] C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, (2017) “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing" Nano Energy 40: 195–202. DOI: 10.1016/j.nanoen.2017.08.013.
  19. [19] R. Zhang, R. Li, Y. Chen, and Y. Cui, (2025) “Ultra sensitive low-frequency visible light dielectric response measured by real capacitance method" Communications Materials 6(1): 48. DOI: 10.1038/s43246-025-00771-w.
  20. [20] D. Gonçalves, L. M. Fernandes, P. Louro, M. Vieira, and A. Fantoni. “Measurement of Photo Capacitance in Amorphous Silicon Photodiodes”. In: Technologi cal Innovation for the Internet of Things. Ed. by L. M. Camarinha-Matos,S.Tomic,andP.Graça.Berlin,Hei delberg: Springer Berlin Heidelberg, 2013, 547–554.
  21. [21] C. Trujillo Herrera and J. G. Labram, (2021) “Quan tifying the performance of perovskite retinomorphic sen sors" J. Phys. D: Appl. Phys. 54(47): 475110. DOI: 10.1088/1361-6463/ac1d10.