Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Chutiphan Sangsoda1, Chayanon Sawatdeenarunat2, and Sumeth Wongkiew1,3This email address is being protected from spambots. You need JavaScript enabled to view it.

1Industrial Toxicology and Risk Assessment Graduate Program, Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

2Asian Development College for Community Economy and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand

3Research Unit (RU) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok 10330, Thailand


 

Received: July 11, 2025
Accepted: November 8, 2025
Publication Date: November 30, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.2026.26030005  


This study investigated the combined effects of biochar amendments with chicken manure, vermicompost, and wastewater sludge (WWS) on hemp (Cannabis sativa L.) growth, soil nutrient enhancement, heavy metal bioavailability, and microbial community dynamics. Three hemp cultivars, e.g., Rosella, Superwoman S1, and Red Robin, were grown in substrates containing biochar (10% w/w) mixed with different organic amend ments (20% w/w) under controlled greenhouse conditions. The results demonstrated that vermicompost promoted hemp growth better than other amendments. Particularly, vermicompost enhanced the growth of the Superwoman S1 cultivar up to 140 cm. Chicken manure effectively increased the soil nutrient retention but demonstrated variability in cultivar-specific growth responses. The WWS treatments exhibited notable growth enhancement, especially in the Red Robin cultivar, indicating the potential of WWS for sustainable reuse in agricultural and industrial hemp cultivation. The plant roots predominantly accumulated heavy metals, thereby minimizing potential contamination risks in the shoots and leaves. The analysis of root microbial communities identified substrate-specific enrichment of several beneficial bacteria, e.g., Solirubrobacter, Devosia, and Sphingomonas, which play crucial roles in nutrient cycling, plant growth promotion, and heavy metal remediation. The root microbial communities depended on the substrate treatments, further highlighting the unique ecological impact of each amendment. These findings demonstrate the significant role of different organic substrate amendments with biochar in promoting hemp cultivation, improving soil health, mitigating heavy metal risks, and shaping beneficial root microbial communities, thereby offering practical strategies for sustainable agriculture and nutrient recovery.


Keywords: Biochar, Chicken manure, Heavy metal, Vermicompost, Wastewater sludge


  1. [1] D. R. Enarevba and K. R. Haapala, (2024) “The Emerging Hemp Industry: A Review of Industrial Hemp Materials and Product Manufacturing" Agri Engineering 6(3): 2891–2925. DOI: 10.3390/agriengineering6030167.
  2. [2] K. I. Mateva, E. Mahenga, T. Matibiri, C. N. Kamutando, F. Magama, and S. Dimbi, (2024) “Genotype Specific Morphophysiological Adaptations and Proline Accumulation Uncover Drought Adaptation Complexity in Hemp (Cannabis Sativa and Cannabis Indica)" Fron tiers in Plant Physiology 2: DOI: 10.3389/fphgy.2024.1441262.
  3. [3] G. Bonanomi, F. De Filippis, M. Zotti, M. Idbella, G. Cesarano, S. Al-Rowaily, and A. Abd-ElGawad, (2020) “Repeated Applications of Organic Amendments Promote Beneficial Microbiota, Improve Soil Fertility and Increase Crop Yield" Applied Soil Ecology 156: 103714. DOI: 10.1016/j.apsoil.2020.103714.
  4. [4] S. Aksorn, V. Kanokkantapong, C. Polprasert, P. ( Noophan, S. K. Khanal, and S. Wongkiew, (2022) “Effects of Cu and Zn Contamination on Chicken Manure Based Bioponics: Nitrogen Recovery, Bioaccumulation, Microbial Community, and Health Risk Assessment" Journal of Environmental Management 311: 114837. DOI: 10.1016/j.jenvman.2022.114837.
  5. [5] J. Domínguez, M. Aira, A. R. Kolbe, M. Gómez Brandón, and M. Pérez-Losada, (2019) “Changes in the Composition and Function of Bacterial Communities during Vermicomposting May Explain Beneficial Properties of Vermicompost" Scientific Reports 9(1): 9657. DOI: 10.1038/s41598-019-46018-w.
  6. [6] R. P. Singh and M. Agrawal, (2008) “Potential Benefits and Risks of Land Application of Sewage Sludge" Waste Management 28(2): 347–358. DOI: 10.1016/j.wasman.2006.12.010.
  7. [7] D. H. Phu, L. T. Ngoc, L. N. Q. Tu, D. T. M. Hieu, N. Q. Long, and M.-V. Le, (2021) “Simultaneous Recovery of Phosphorus and Nitrogen from Inorganic Fertilizer Wastewater" Journal of Applied Science and Engineering 25(4): 773–784. DOI: 10.6180/jase.202208_25(4).0013.
  8. [8] O. Mabrouk, H. Hamdi, S. Sayadi, M. A. Al-Ghouti, M. H. Abu-Dieyeh, and N. Zouari, (2023) “Reuse of Sludge as Organic Soil Amendment: Insights into the Cur rent Situation and Potential Challenges" Sustainability 15(8): 6773. DOI: 10.3390/su15086773.
  9. [9] C. Sangsoda, C. Sawatdeenarunat, and S. Wongkiew, (2025) “Vermicompost versus Chicken Manure: Comparative Effects on Hemp Growth, Heavy Metal Sequestration, and Root Microbial Communities in Rosella, Superwoman S1, and Red Robin Cultivars" Bioresource Technology Reports 29: 102017. DOI: 10.1016/j.biteb.2024.102017.
  10. [10] D. F. Placido and C. C. Lee, (2022) “Potential of Industrial Hemp for Phytoremediation of Heavy Metals" Plants 11(5): 595. DOI: 10.3390/plants11050595.
  11. [11] Y. Guo, L. Wen, X. Zhao, C. Xing, and R. Huang, (2024) “Industrial Hemp (Cannabis Sativa L.) Can Utilize and Remediate Soil Strongly Contaminated with Cu, As, Cd, and Pb by Phytoattenuation" Chemosphere 358: 142199. DOI: 10.1016/j.chemosphere.2024.142199.
  12. [12] Q. Wu, J. Zhang, X. Liu, T. Chang, Q. Wang, H. Shaghaleh, and Y. A. Hamoud, (2023) “Effects of Biochar and Vermicompost on Microorganisms and Enzymatic Activities in Greenhouse Soil" Frontiers in Environmental Science 10: DOI: 10.3389/fenvs.2022.1060277.
  13. [13] I. Nogués, V. Mazzurco Miritana, L. Passatore, M. Za cchini, E. Peruzzi, S. Carloni, F. Pietrini, R. Marabot tini, T. Chiti, L. Massaccesi, and S. Marinari, (2023) “Biochar Soil AmendmentasCarbonFarmingPractice in a Mediterranean Environment" Geoderma Regional 33: e00634. DOI: 10.1016/j.geodrs.2023.e00634.
  14. [14] J. Wang, L. Shi, L. Zhai, H. Zhang, S. Wang, J. Zou, Z. Shen, C. Lian, and Y. Chen, (2021) “Analysis of the Long-Term Effectiveness of Biochar Immobilization Re mediation on Heavy Metal Contaminated Soil and the Potential Environmental Factors Weakening the Remediation Effect: A Review" Ecotoxicology and Environ mental Safety 207: 111261. DOI: 10.1016/j.ecoenv.2020.111261.
  15. [15] K. N. Palansooriya, J. Li, P. D. Dissanayake, M. Su varna, L. Li, X. Yuan, B. Sarkar, D. C. W. Tsang, J. Rinklebe, X. Wang, and Y. S. Ok, (2022) “Prediction of Soil Heavy Metal Immobilization by Biochar Using Ma chine Learning" Environmental Science & Technol ogy 56(7): 4187–4198. DOI: 10.1021/acs.est.1c08302.
  16. [16] X. Chen, H.-Z. He, G.-K. Chen, and H.-S. Li, (2020) “Effects of Biochar and Crop Straws on the Bioavailability of Cadmium in Contaminated Soil" Scientific Reports 10(1): 9528. DOI: 10.1038/s41598-020-65631-8.
  17. [17] F. Sui, J. Zuo, D. Chen, L. Li, G. Pan, and D. E. Crow ley, (2018) “Biochar Effects on Uptake of Cadmium and Lead by Wheat in Relation to Annual Precipitation: A 3 Year Field Study" Environmental Science and Pollution Research 25(4): 3368–3377. DOI: 10.1007/s11356 017-0652-4.
  18. [18] M. Majewska and A. Hanaka, (2025) “Biochar in the Bioremediation of Metal-Contaminated Soils" Agronomy 15(2): 273. DOI: 10.3390/agronomy15020273.
  19. [19] C. Luo, Y. He, and Y. Chen, (2025) “Rhizosphere Microbiome Regulation: Unlocking the Potential for Plant Growth" Current Research in Microbial Sciences 8: 100322. DOI: 10.1016/j.crmicr.2024.100322.
  20. [20] S. Zhai, M. Li, Y. Xiong, D. Wang, and S. Fu, (2020) “Dual Resource Utilization for Tannery Sludge: Effects of Sludge Biochars (BCs) on Volatile Fatty Acids (VFAs) Pro duction from Sludge Anaerobic Digestion" Bioresource Technology 316: 123903. DOI: 10.1016/j.biortech.2020.123903.
  21. [21] J. Cui, B. Yang, M. Zhang, D. Song, X. Xu, C. Ai, G. Liang, and W. Zhou, (2023) “Investigating the Effects of Organic Amendments on Soil Microbial Composition and Its Linkage to Soil Organic Carbon: A Global Meta Analysis" Science of The Total Environment 894: 164899. DOI: 10.1016/j.scitotenv.2023.164899.
  22. [22] S. Thiebkhun, S. Wongkiew, T. Saleepochn, and P. ( Noophan, (2024) “Struvite From Domestic Wastewater Supplementation In Hydroponics For Sustainable Phosphorus And Nitrogen Recovery" Journal of Applied Science and Engineering 27(12): 3711–3723. DOI: 10.6180/jase.202412_27(12).0011.
  23. [23] A. Regmi, S. Singh, N. Moustaid-Moussa, C. Coldren, and C. Simpson, (2022) “The Negative Effects of High Rates of Biochar on Violas Can Be Counter acted with Fertilizer" Plants 11(4): 491. DOI: 10.3390/plants11040491.
  24. [24] APHA. Standard Methods for the Examination of Water and Wastewater. 23rd. Washington, D.C: American Public Health Association, 2017.
  25. [25] A. Walkley and I. A. Black, (1934) “An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method" Soil Science 37(1): 29–38. DOI: 10.1097/00010694-193401000-00003.
  26. [26] B.J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes, (2016) “DADA2: High-Resolution Sample Inference from Illumina Am plicon Data" Nature Methods 13(7): 581–583. DOI: 10.1038/nmeth.3869.
  27. [27] Y. B. Wee, O. Berkowitz, J. Whelan, and R. Jost, (2025) “Same, yet Different: Towards Understanding Nutrient Use in Hemp- and Drug-Type Cannabis" Journal of Experimental Botany 76(1): 94–108. DOI: 10.1093/jxb/erae362.
  28. [28] S. Sajar, A. Setiawan, and A. Tri Anzani, (2024) “Effect of Various Biochar Materials and Levels of Chicken Manure Fertilizer on Soil Chemical, Growth and Yield of Soybean (Glycine Max L Merrill)" International Journal of Research and Review 11(8): 279–293. DOI: 10.52403/ijrr.20240830.
  29. [29] S. M. Awad, A. E. Nasralla, E. A. M. Osman, Y. A. Srour, and I. R. Mohamed, (2023) “Mutual Effect of Organic, Inorganic and Bio-Fertilizers on Sudan Grass Grown in Sandy Soil" Journal of Applied Science and Engineering 27(4): 2289–2299. DOI: 10.6180/jase.202404_27(04).0001.
  30. [30] M.K.Souri,M.Hatamian,andT.Tesfamariam,(2019) “Plant Growth Stage Influences Heavy Metal Accumulation in Leafy Vegetables of Garden Cress and Sweet Basil" Chemical and Biological Technologies in Agriculture 6(1): 25. DOI: 10.1186/s40538-019-0170-3.
  31. [31] D. T˝ozsér, R. Horváth, E. Simon, and T. Magura, (2023) “Heavy Metal Uptake by Plant Parts of Populus Species: A Meta-Analysis" Environmental Science and Pollution Research 30(26): 69416–69430. DOI: 10.1007/s11356-023-27244-2.
  32. [32] A. Christou, E. C. Georgiadou, A. M. Zissimos, I. C. Christoforou, C. Christofi, D. Neocleous, P. Dalias, A. Ioannou, and V. Fotopoulos, (2021) “Uptake of Hex avalent Chromium by Tomato (Solanum Lycopersicum L.) Plants and Mediated Effects on Their Physiology and Productivity, along with Fruit Quality and Safety" Environmental and Experimental Botany 189: 104564. DOI: 10.1016/j.envexpbot.2021.104564.
  33. [33] M. A. Huq, K. NAM, M. S. Rahman, M. M. Rahman, M. A. K. Parvez, K.-K. Kang, and S. Akter, (2024) “Nocardioides Agri Sp. Nov., Isolated from Garden Soil" International Journal of Systematic and Evolutionary Microbiology 74(6): DOI: 10.1099/ijsem.0.006407.
  34. [34] M. E. Hamid, T. Reitz, M. R. P. Joseph, K. Hom mel, A. Mahgoub, M. M. Elhassan, F. Buscot, and M. Tarkka, (2020) “Diversity and Geographic Distribution of Soil Streptomycetes with Antagonistic Potential against Actinomycetoma-Causing Streptomyces Sudanensis in Sudan and South Sudan" BMC Microbiology 20(1): 33. DOI: 10.1186/s12866-020-1717-y.
  35. [35] C. M. Glickman, R. Virdi, N. A. Hasan, L. E. Epper son, L. Brown, S. N. Dawrs, J. L. Crooks, E. D. Chan, M. Strong, S. T. Nelson, and J. R. Honda, (2020) “Assessment of Soil Features on the Growth of Environmental Nontuberculous Mycobacterial Isolates from Hawai’i" Applied and Environmental Microbiology 86(21): DOI: 10.1128/AEM.00121-20.
  36. [36] A. K. Saxena, M. Kumar, H. Chakdar, N. Anuroopa, and D. J. Bagyaraj, (2020) “Bacillus Species in Soil as a Natural Resource for Plant Health and Nutrition" Journal of Applied Microbiology 128(6): 1583–1594. DOI: 10.1111/jam.14506.
  37. [37] J. H. Baek, W. Baek, W. Ruan, H. S. Jung, S. C. Lee, and C. O. Jeon, (2022) “Massilia Soli Sp. Nov., Isolated from Soil" International Journal of Systematic and Evolutionary Microbiology 72(2): DOI: 10.1099/ijsem.0.005227.
  38. [38] R. Gao, J. Zheng, W. Lu, X. Ke, M. Chen, M. Lin, W. Zhang, and Z. Zhou, (2022) “Shinella Oryzae Sp. Nov., a Novel Zearalenone-Resistant Bacterium Isolated from Rice Paddy Soil" Antonie van Leeuwenhoek 115(5): 573–587. DOI: 10.1007/s10482-022-01724-w.
  39. [39] L. Xiong, L. An, Y. Zong, M. Wang, G. Wang, and M. Li, (2020) “Luteimonas Gilva Sp. Nov., Isolated from Farmland Soil" International Journal of Systematic and Evolutionary Microbiology 70(5): 3462–3467. DOI: 10.1099/ijsem.0.004197.
  40. [40] M. Duan, C. Yang, L. Bao, D. Han, H. Wang, Y. Zhang, H. Liu, and S. Yang, (2023) “Morchella Esculenta Cultivation in Fallow Paddy Fields and Drylands Affects the Diversity of Soil Bacteria and Soil Chemical Properties" Frontiers in Genetics 14: DOI: 10.3389/fgene.2023.1251695.
  41. [41] L. Jimenez, (2025) “Bacterial Community Composition and Diversity of Soils from Different Geographical Lo cations in the Northeastern USA" Microbiology Re search 16(2): 47. DOI: 10.3390/microbiolres16020047.
  42. [42] G.Wang,Z.Jin,X.Wang,T.S.George,G.Feng,andL. Zhang, (2022) “Simulated Root Exudates Stimulate the Abundance of Saccharimonadales to Improve the Alkaline Phosphatase Activity in Maize Rhizosphere" Applied Soil Ecology 170: 104274. DOI: 10.1016/j.apsoil.2021.104274.
  43. [43] T. Päll, E. Zagal-Venegas, T. Pavlicek, E. Nevo, and S. Timmusk, (2024) “Comparative Analysis of Microbial Communities of Soils under Contrasting Microclimates" bioRxiv: DOI: 10.1101/2024.11.27.625671.
  44. [44] X.-T. Quan, M. Z. Siddiqi, Q.-Z. Liu, S.-M. Lee, and W.-T. Im, (2020) “Devosia Ginsengisoli Sp. Nov., Isolated from Ginseng Cultivation Soil" International Journal of Systematic and Evolutionary Microbiology 70(3): 1489–1495. DOI: 10.1099/ijsem.0.003843.
  45. [45] W.Zu,W.Pan, Y. Xue, L. Yang, and Y. Lin, (2022) “Effects of Tillage Depths and Green Manure Overturning on Microbial Community Structure and Diversity of Tobacco Planting Soil" Journal of Southern Agriculture 53(6): 1513–1524. DOI: 10.3969/j.issn.2095-1191.2022.06.004.
  46. [46] Y. Sun, Z.-M. Jiang, L.-L. Zhao, J. Su, L.-Y. Yu, Y.-Q. Tian, and Y.-Q. Zhang, (2019) “Allorhizocola Rhi zosphaerae Gen. Nov., Sp. Nov., a New Member of Mi cromonosporaceae Isolated from Rhizosphere Soil of the Plant Calligonum Mongolicum" International Journal of Systematic and Evolutionary Microbiology 69(1): 109–115. DOI: 10.1099/ijsem.0.003114.
  47. [47] S. Asaf, M. Numan, A. L. Khan, and A. Al-Harrasi, (2020) “Sphingomonas: From Diversity and Genomics to Functional Role in Environmental Remediation and Plant Growth" Critical Reviews in Biotechnology 40(2): 138–152. DOI: 10.1080/07388551.2019.1709793.
  48. [48] X.Liang,X.Wang,N.Zhang,andB.Li,(2022)“Biogeo graphical Patterns and Assembly of Bacterial Communities in Saline Soils of Northeast China" Microorganisms 10(9): 1787. DOI: 10.3390/microorganisms10091787.
  49. [49] L. Cheng, L. Wang, X. Wang, Y. Ou, H. Liu, X. Hou, L. Yan, and X. Li, (2023) “The Various Effect of Cow Manure Compost on the Degradation of Imazethapyr in Different Soil Types" Chemosphere 337: 139325. DOI: 10.1016/j.chemosphere.2023.139325.
  50. [50] H.-S. Kim, S.-H. Lee, H. Y. Jo, K. T. Finneran, and M. J. Kwon, (2021) “Diversity and Composition of Soil Acidobacteria and Proteobacteria Communities as a Bacterial Indicator of Past Land-Use Change from Forest to Farmland" Science of The Total Environment 797: 148944. DOI: 10.1016/j.scitotenv.2021.148944.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.