Yofentina Iriani1This email address is being protected from spambots. You need JavaScript enabled to view it., Dianisa Khoirum Sandi2, Firda Reza Agustina1, Laili Uswatun Hasanah1, Fahru Nurosyid1, and Didier Fasquelle3

1Department of Physics, Faculty of Mathematics and Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia

2Study Program of Energy Conversion Engineering, Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang, 50275, Indonesia

3Department of Unitede Dynamique et Structure des Materiaux Moleculaires, Universite du Littoral-Cote d’Opale, CS 80699 F-62228 Calais, France


 

Received: September 24, 2025
Accepted: December 10, 2025
Publication Date: January 26, 2026

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202608_31.001  


Strontium Titanate ( SrTiO3 or STO ) is a perovskite semiconductor extensively studied for photocatalytic applications, particularly in methylene blue (MB) degradation from wastewater. Its photocatalytic performance can be enhanced by site-specific doping either at the A-site ( Sr ) and/or B-site (Ti) of the perovskite lattice. Here, pure, Ni-doped, and Nd-doped STO photocatalysts (SrTi1−xNixO3 and Sr1−xNdxTiO3;x = 0.05) were successfully fabricated via the coprecipitation technique. Structural, vibrational, and optical properties were characterized by X-ray diffraction (XRD), Fourier Transform infrared (FTIR), UV-Vis diffuse reflectance spectra (DRS), and UV-Vis spectroscopy instruments. The cubic SrTiO3 perovskite phase was achieved in all samples, where both Ni and Nd doping enlarged the crystallite sizes of STO. The success of photocatalyst formation was also confirmed by emerging FTIR spectra at about 570 cm−1, corresponding to Sr-Ti-O vibrations. DRS analysis revealed a bandgap of 3.23 eV for STO, which widened to 3.55 eV upon Ni doping, while Nd doping narrowed it slightly to


Keywords: Coprecipitation method; methylene blue degradation; Ni-doped and Nd-doped Strontium Titanate; Photocatalyst; Photocatalytic activity.


  1. [1] H. Etay, A. Kumar, and O. P. Yadav, (2023) “Kinetics of photocatalytic degradation of methylene blue dye in aqueous medium using ZnO nanoparticles under UV radiation" Journal of Analytical & Pharmaceutical research 12(1): 32–37. DOI: 10.15406/japlr.2023.12. 00421.
  2. [2] X. T. Mai, D. N. Bui, V. K. Pham, T. H. T. Pham, T. T. L. Nguyen, H. D. Chau, and T. K. N. Tran, (2022) “Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light" Inorganics 10(11): DOI: 10.3390/inorganics10110211.
  3. [3] J. Iyyappan, B. Gaddala, R. Gnanasekaran, M. Gopinath, D. Yuvaraj, and V. Kumar, (2024) “Critical review on wastewater treatment using photo catalytic advanced oxidation process: Role of photocatalytic ma terials, reactor design and kinetics" Case Studies in Chemical and Environmental Engineering 9: DOI: 10.1016/j.cscee.2023.100599.
  4. [4] H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, and R. Parmar, (2023) “A Review on Photo catalysis Used For Wastewater Treatment: Dye Degrada tion" Water Air Soil Pollut 234(6): 349. DOI: 10.1007/s11270-023-06359-9.
  5. [5] S. Sagadevan, J. A. Lett, G. K. Weldegebrieal, S. Garg, W.-C. Oh, N. A. Hamizi, and M. R. Johan, (2021) “Enhanced Photocatalytic Activity of rGO-CuO Nanocompos ites for the Degradation of Organic Pollutants" Catalysts 11(8): DOI: 10.3390/catal11081008.
  6. [6] N. Madkhali, C. Prasad, K. Malkappa, H. Y. Choi, V. Govinda, I. Bahadur, and R. A. Abumousa, (2023) “Recent update on photocatalytic degradation of pollutants in waste water using TiOs-based heterostructured materials" Results in Engineering 17: DOI: 10.1016/j.rineng.2023.100920.
  7. [7] S. Nengsih, S. Nur Abdulmadjid, M. Mursal, and Z. Jalil, (2024) “Photocatalytic performance of Fe3O4-TiO2 in the degradation of methylene blue dye: Optimizing the usability of natural iron sand" Materials Science for Energy Technologies 7: 374–380. DOI: 10.1016/j.mset.2024.06.001.
  8. [8] S. Nengsih, S. N. Madjid, M. Mursal, R. Idroes, and Z. Jalil, (2023) “Magnetization Study of Iron Sand from Sabang, Indonesia: The Potential of Magnetic Materials in the Photocatalytic Field" Bulletin of Chemical Re action Engineering & Catalysis 18(2): 344–352. DOI: 10.9767/bcrec.19041.
  9. [9] L. Liu, Z. Cui, B. Feng, M. Sui, H. Huang, and Z. Wu, (2024) “Synthesis of Fe2O3/TiO2 Photocatalytic Composites for Methylene Blue Degradation as a Novel Strategy for High-Value Utilisation of Iron Scales" Materials (Basel) 17(18): DOI: 10.3390/ma17184546.
  10. [10] R. Sridevi, A. Prakasam, M. Karthik, P. M. An barasan, and K. Deepakavijay, (2025) “Synergistic g-C3N4/CoAl-LDH heterojunctions for superior visible light-driven hydrogen evolution and wastewater treatment" Journal of Materials Science: Materials in Electronics 36(27): DOI: 10.1007/s10854-025-15798-5.
  11. [11] N. Matinise, N. Botha, A. Fall, and M. Maaza, (2025) “Enhanced photocatalytic degradation of methylene blue using zinc vanadate nanomaterials with structural and electrochemical properties" Sci Rep 15(1): 26333. DOI: 10.1038/s41598-025-11418-8.
  12. [12] V. V. Deshmukh, C. R. Ravikumar, M. R. A. Kumar, S. Ghotekar, A. N.Kumar, A. A. Jahagirdar, and H. C. A. Murthy, (2021) “Structure, morphology and electrochemical properties of SrTiO3 perovskite: Photocatalytic and su percapacitor applications" Environmental Chemistry and Ecotoxicology 3: 241–248. DOI: 10.1016/j.enceco. 2021.07.001.
  13. [13] N. S. Peighambardoust and U. Aydemir, (2021) “Electrophoretic deposition and characterization of self-doped SrTiO3 thin films" Turk J Chem 45(2): 323–332. DOI: 10.3906/kim-2007-13.
  14. [14] Y. Wang, W. Ma, Y. Song, J. Chen, J. Xu, D. Wang, and Z. Mao, (2021) “Enhanced photocatalytic performance of SrTiO3 powder induced by europium dopants" Journal of Rare Earths 39(5): 541–547. DOI: 10.1016/j.jre.2020.07.002.
  15. [15] N. Pornnipa, K. Malinee, B. Theerachai, E.-U. Apiluck, and S. Tawat, (2022) “Effect of Nb doping on the structural, optical, and photocatalytic properties of SrTiO3 nanopowder synthesized by sol-gel auto combus tion technique" Journal of Asian Ceramic Societies 10(3): 583–596. DOI: 10.1080/21870764.2022.2094556.
  16. [16] M. Nawaz, Y. Mu, Y. Gao, S. Jiang, X. Liu, R. Tao, Z. Chu, X. Fan, and C. Xu, (2025) “Development of Z-scheme Al–SrTiO3/g-C3N4 heterojunctions with Co rhx/cr2-xo3 Co-catalysts for enhanced photocatalytic over all water splitting" International Journal of Hydro gen Energy 124: 84–91. DOI: 10.1016/j.ijhydene.2025. 03.377.
  17. [17] M. Abd Elkodous, A. M. El-Khawaga, M. M. Abouelela, and M. I. A. Abdel Maksoud, (2023) “Co catalyst loaded Al-SrTiO(3) cubes for Congo red dye photo degradation under wide range of light" Sci Rep 13(1): 6331. DOI: 10.1038/s41598-023-33249-1.
  18. [18] P. Krishna Murthy, K. S. Kiran, and E. Melagiriyappa, (2024) “Influence of Nd3+ on structural, electrical and magnetic properties of Ni-Cd nanoferrites" Physics Open21: DOI: 10.1016/j.physo.2024.100240.
  19. [19] Y. Faraj and R. Xie,(2022) “and Nanocomposites for Photocatalytic Decontamination" Nanocomposite Materials for biomedical and energy storage applications: 209.
  20. [20] H. Bantawal, U. S. Shenoy, and D. K. Bhat, (2020) “Vanadium-Doped SrTiO3 Nanocubes: Insight into role of vanadium in improving the photocatalytic activity" Applied Surface Science 513: DOI: 10.1016/j.apsusc.2020.145858.
  21. [21] E. K. A. Ardi, Y. Iriani, and D. Fasquelle, (2024) “Fer rite (Fe) Doping in Strontium Titanate (SrTi1-xFexO3) to Improve Photocatalytic Activity" Advances in Science and Technology 141: 71–76. DOI: https: //doi.org/10.4028/p-8dwrOk
  22. [22] L. A. González, M. J. Cano-Valencia, and E. Vento Lujano, (2024) “Visible-light photocatalytic performance of SrTiOs nanoparticles modified with cobalt" Optical Materials 157: DOI: 10.1016/j.optmat.2024.116231.
  23. [23] Y. Iriani, R. Afriani, S. Dianisa Khoirum, and F. Nurosyid, (2022) “Co-precipitation Synthesis and Photocatalytic Activity of Mn-doped SrTiO3 for the Degradation of Methylene Blue Wastewater" Evergreen 9(4): 1039–1045. DOI: 10.5109/6625717.
  24. [24] R. F. Agustina, B. Suherman, L. U. Hasanah, N. F. S. Puspita, D. K. Sandi, F. Nurosyid, E. Handoko, and Y. Iriani, (2023) “Preparation of Nickel (Ni) doped SrTiO3 and effects of sintering temperatures on its properties as photocatalyst" Journal of Physics: Conference Series 2498(1): DOI: 10.1088/1742-6596/2498/1/012018.
  25. [25] Y. Iriani, D. K. Sandi, D. N. Hikmah, R. Afriani, F. Nurosyid, E. Handoko, and D. Faquelle, (2024) “Com parison study of aluminum (Al)-doped strontium titanate (SrAlxTi1-xO3; x= 3% and 5%) photocatalyst for methylene blue degradation" Materials Today: Proceedings:
  26. [26] D. Jiang, X. Sun, X. Wu, L. Shi, and F. Du, (2020) “Hydrothermal synthesis of single-crystal Cr-doped SrTiO3 for efficient visible-light responsive photocatalytic hydro gen evolution" Materials Research Express 7(1): DOI: 10.1088/2053-1591/ab660d.
  27. [27] R. Lopez-Juarez, (2021) “Microwave hydrothermal syn thesis and photocatalytic properties of Cr-doped SrTiO3 powders" Ceramics-Silikaty: 113–119. DOI: 10.13168/cs.2021.0009.
  28. [28] P. Nunocha, M. Kaewpanha, T. Bongkarn, A. Phu ruangrat, and T. Suriwong, (2021) “A new route to synthesizing La-doped SrTiO3 nanoparticles using the sol-gel auto combustion method and their characterization and photocatalytic application" Materials Science in Semiconductor Processing 134: DOI: 10.1016/j.mssp. 2021.106001.
  29. [29] Y. Iriani, N. F. S. Puspita, D. K. Sandi, F. Nurosyid, R. Suryana, and D. Fasquelle, (2024) “The Improved Photocatalytic Performance of Strontium Titanate (STO) Pow der Induced by Lanthanum Dopants" Iranian Journal of Materials Science and Engineering 21(4): 3645. DOI: 10.22068/ijmse.3645.
  30. [30] D. Anand, K. Ramachandran, P. Sakthivel, and M. Silambarasan, (2024) “Investigations of crystallographic, magnetic, optical and photoluminescence nature of Sm2O3 doped SrTiO3 nanomaterials for LED" Ceram ics International 50(18): 33590–33598. DOI: 10.1016/j.ceramint.2024.06.175.
  31. [31] Z.Aboub,B.Daoudi,andA.Boukraa,(2020)“Theoretical study of Ni doping SrTiO3 using a density functional theory" AIMS Materials Science 7(6): 902–910. DOI: 10.3934/matersci.2020.6.902.
  32. [32] Z. Aboub, T. Seddik, B. Daoudi, A. Boukraa, D. Behera, M. Batouche, and S. K. Mukherjee, (2023) “Im pact of La, Ni-doping on structural and electronic properties of SrTiO3 for photocatalytic water splitting" Inorganic Chemistry Communications 153: DOI: 10.1016/j.inoche.2023.110871.
  33. [33] F. T. Geldasa and F. B. Dejene, (2025) “Transition metal doping effects on the structural, mechanical, electronic, and optical properties of α-NiS for photocatalysis applications via DFT+U insights" Applied Physics A 131(11): DOI: 10.1007/s00339-025-08942-9.
  34. [34] D. Hamdi, D. Talantikite-Touati, A. Manseri, A. T. Khodja, and A. Souici, (2024) “Role of Nd doping on the structural, morphological and optical properties of Ba TiO3 nanoparticles hydrothermally synthesized" Optical Materials 152: DOI: 10.1016/j.optmat.2024.115387.
  35. [35] C. V. M. Hunize, M. A. Joseph, and K. P. Murali, (2022) “Synthesis and Dielectric Characterization of Nd Doped SrTiO3 Ceramics for Energy Storage Applications" Key Engineering Materials 928: 113–118. DOI: 10. 4028/p-v58473.
  36. [36] M.V.Talanov,A.I.Stash, S. A. Ivanov, E. S. Zhukova, B. P. Gorshunov, B. M. Nekrasov, A. V. Melentev, V. I. Kozlov, V. M. Cherepanov, S. Y. Gavrilkin, A. Y. Tsvetkov, I. A. Zavidovskiy, M. K. Tatmyshevskiy, M. Savinov, V. M. Talanov, and A. A. Bush, (2024) “Transition metal-doped SrTiO3: when does a tiny chemical impact have such a great structural response?" Journal of Materials Chemistry C 12(22): 8105–8118. DOI: 10.1039/d4tc00180j.
  37. [37] M. A. Kafeshani, V. Mahdikhah, and S. Sheibani, (2022) “Facile preparation and modification of SrTiO3 through Ni–Cd co-doping as an efficient visible-light driven photocatalyst" Optical Materials 133: DOI: 10. 1016/j.optmat.2022.113080.
  38. [38] L. C. O. Dacal, A. Cantarero, and V. Olevano, (2019) “Substrate strain and doping effects on the crystal structure of SrNbxTi1-x03" The European Physical Journal B 92(8): DOI: 10.1140/epjb/e2019-100120-4.
  39. [39] T. A. Ta, L. D. Pham, H. S. Nguyen, C. V. Hoang, C. H. Le, C. T. Dang, H. T. T. Nguyen, and N. V. Nguyen, (2017) “Structural and optical properties of SrTiO3 nano material obtained by sol-gel method" Communications in Physics 27(2): DOI: 10.15625/0868-3166/27/2/ 9631.
  40. [40] E. Rocha-Rangel, W. J. Pech-Rodríguez, J. López Hernández, C. A. Calles-Arriaga, E. N. Armendáriz Mireles, J. A. Castillo-Robles, and J. A. Rodríguez García, (2020) “Synthesis of SrTiO3 by the Calcination of SrCO3andTiO2Mixtures Intensively Ground By Means of High Energy Milling" Arch. Metall. Mater. 65(2): 621–626. DOI: 10.24425/amm.2020.132801.
  41. [41] G. Z. Girotto, A. S. Thill, L. P. Matte, M. A. H. Vogt, T. V. Machado, L. F. P. Dick, F. Mesquita, and F. Bernardi, (2022) “Ni/SrTiO3 Nanoparticles for Pho to degradation of Methylene Blue" ACS Applied Nano Materials 5(9): 13295–13307. DOI: 10.1021/acsanm.2c03007.
  42. [42] C. N. Botelho, S. S. Falcao, R. P. Soares, S. R. Pereira, A. S. de Menezes, L. T. Kubota, F. S. Damos, and R. C.S.Luz,(2022)“Evaluation of a photoelectrochemical platform based on strontium titanate, sulfur doped carbon nitride and palladium nanoparticles for detection of SARS CoV-2 spike glycoprotein S1" Biosens Bioelectron X 11: 100167. DOI: 10.1016/j.biosx.2022.100167.
  43. [43] S. K. Panagiotis, K. Ioannis, P. Dimitrios, and A. Tri antafyllos, (2018) “Development of SrTiO3 Photocatalysts with Visible Light Response Using Amino Acids as Dopant Sources for the Degradation of Organic Pollutants in Aqueous Systems" Catalysts 8(528): 1–18. DOI: 10.3390/catal8110528.
  44. [44] X.Yongmei, H.Zuming, S. Jiangbin, L. Ya, and T. Bin, (2018) “Fabrication and Photocatalytic Property of Novel SrTiO3/Bi5O7I Nanocomposites" Nanoscale Res Lett 13(1): 148. DOI: 10.1186/s11671-018-2558-6.
  45. [45] Z. Wu, Y. Zhang, X. Wang, and Z. Zou, (2017) “Ag@SrTiO3 nanocomposite for superphoto catalytic degradation of organic dye and catalytic reduction of 4 nitrophenol" New Journal of Chemistry 41(13): 5678–5687. DOI: 10.1039/c7nj00522a.
  46. [46] W. Yujuan and S. Jingjing, (2020) “Synthesis and Photocatalytic Mechanism of the Organic Functional Groups Decorated SrTiO3 Photocatalyst" Russian Journal of Physical Chemistry A 94(1): 211–219. DOI: 10.1134/s0036024420010355.
  47. [47] S. Landi, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, and C. J. Tavares, (2022) “Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements" Solid State Com munications 341: DOI: 10.1016/j.ssc.2021.114573.
  48. [48] Y. R. Wang, H. L. Tao, Y. Cui, S. M. Liu, M. He, B. Song, J. K. Jian, and Z. H. Zhang, (2020) “Investigations on tuning the band gaps of Al doped SrTiO3" Chemical Physics Letters 757: DOI: 10.1016/j.cplett. 2020.137879.
  49. [49] A. Ou-khouya, I. Ait Brahim, H. Ez-Zahraouy, A. Houba, H. Mes-Adi, and M. Tahiri, (2024) “First principles calculations to investigate impact of doping by chalcogen elements on the electronic, structural, and opti cal properties of SrTiO3 compounds" Chemical Physics 581: DOI: 10.1016/j.chemphys.2024.112253.
  50. [50] D. Kim, S. Gwon, K. Park, and E.-C. Jeon, (2024) “Structural and Optical Properties of SrTiOss-Based Ce ramics for Energy and Electronics Applications" Crystals 14(11): DOI: 10.3390/cryst14110942.
  51. [51] J. Živojinovi´c, V. P. Pavlovi´c, D. Kosanovi´c, S. Markovi´c, J. Krsti´c, V. A. Blagojevi´c, and V. B. Pavlovi´c, (2017) “The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders" Journal of Alloys and Compounds 695: 863–870. DOI: 10.1016/j.jallcom.2016.10.159.
  52. [52] N.Narayanan and N. Deepak, (2018) “Ga Dopant Induced Band Gap Broadening and Conductivity Enhancement in Spray Pyrolysed Zn0.85Ca0.15O thin Films" Materials Research 21(6): DOI: 10.1590/1980-5373 mr-2018-0034.
  53. [53] X. Tao, Y. Hua, D. Lijing, M. Jinyuan, Z. Haimin, and D. Jianfeng, (2014) “Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity" Nanoscale Research Letters 9:
  54. [54] Q. V. Vo, L. T. T. Thao, T. D. Manh, M. V. Bay, B. T. Truong-Le, N. T. Hoa, and A. Mechler, (2024) “Re action of methylene blue with OH radicals in the aqueous environment: mechanism, kinetics, products and risk assessment" RSC Adv 14(37): 27265–27273. DOI: 10. 1039/d4ra05437g.
  55. [55] I. Raheb and M. S. Manlla, (2021) “Kinetic and thermodynamic studies of the degradation of methylene blue by photo-Fenton reaction" Heliyon 7(6): e07427. DOI: 10.1016/j.heliyon.2021.e07427.
  56. [56] H. D. Tran, D. Q. Nguyen, P. T. Do, and U. N. P. Tran, (2023) “Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach" RSC Adv 13(25): 16915–16925. DOI: 10.1039/d3ra01970e.
  57. [57] G. Salehi, M. Bagherzadeh, R. Abazari, M. Hajilo, andD.Taherinia, (2024) “Visible Light-Driven Photocatalytic Degradation of Methylene Blue Dye Using a Highly Efficient Mg-Al LDH@g-C3N4@Ag3PO4 Nanocomposite" ACS Omega 9(4): 4581–4593. DOI: 10.1021/acsomega.3c07326.
  58. [58] T. Xian, H. Yan, L. J. Di, and J. F. Dai, (2015) “Enhanced photocatalytic activity of SrTiO3 particles by sur face decoration with Ag nanoparticles for dye degradation" Physica Scripta 90: 055801. DOI: 10.1088/0031 8949/90/5/055801.
  59. [59] S. Wardhani, D. Purwonugroho, C. W. Fitri, and Y. P. Prananto, (2018) “Effect of pH and irradiation time on TiO2-chitosan activity for phenol photo-degradation" Catalysis Letters 2021(1): 050009. DOI: 10.1063/1. 5062759.
  60. [60] J. Z. Bloh, (2021) “Intensification of Heterogeneous Photocatalytic Reactions Without Efficiency Losses: The Importance of Surface Catalysis" Catalysis Letters 151(11): 3105–3113. DOI: 10.1007/s10562-021-03573-0.
  61. [61] A. B. D. Nandiyanto, R. Zaen, and R. Oktiani, (2020) “Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles" Arabian Journal of Chemistry 13(1): 1283–1296. DOI: 10.1016/j.arabjc.2017.10.010.
  62. [62] G. M. Repa, Z. J. Knepp, and L. A. Fredin, (2024) “A-Site Doping to Alter Oxygen Vacancy Diffusion in SrTiO3" ACS Omega 9(24): 26719–26723. DOI: 10.1021/acsomega.4c04099.
  63. [63] Y. Bi, Z. Zhao, J. Qian, L. Chen, and C. Duan, (2024) “Coordination of Ti3+ and Ni3+ to promote the electrocatalytic OER properties of SrTiO3@TiO2 heterojunctions" Sustainable Energy & Fuels 8(15): 3341–3346. DOI: 10.1039/d4se00258j.