- [1] H. Etay, A. Kumar, and O. P. Yadav, (2023) “Kinetics of photocatalytic degradation of methylene blue dye in aqueous medium using ZnO nanoparticles under UV radiation" Journal of Analytical & Pharmaceutical research 12(1): 32–37. DOI: 10.15406/japlr.2023.12. 00421.
- [2] X. T. Mai, D. N. Bui, V. K. Pham, T. H. T. Pham, T. T. L. Nguyen, H. D. Chau, and T. K. N. Tran, (2022) “Effect of CuO Loading on the Photocatalytic Activity of SrTiO3/MWCNTs Nanocomposites for Dye Degradation under Visible Light" Inorganics 10(11): DOI: 10.3390/inorganics10110211.
- [3] J. Iyyappan, B. Gaddala, R. Gnanasekaran, M. Gopinath, D. Yuvaraj, and V. Kumar, (2024) “Critical review on wastewater treatment using photo catalytic advanced oxidation process: Role of photocatalytic ma terials, reactor design and kinetics" Case Studies in Chemical and Environmental Engineering 9: DOI: 10.1016/j.cscee.2023.100599.
- [4] H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, and R. Parmar, (2023) “A Review on Photo catalysis Used For Wastewater Treatment: Dye Degrada tion" Water Air Soil Pollut 234(6): 349. DOI: 10.1007/s11270-023-06359-9.
- [5] S. Sagadevan, J. A. Lett, G. K. Weldegebrieal, S. Garg, W.-C. Oh, N. A. Hamizi, and M. R. Johan, (2021) “Enhanced Photocatalytic Activity of rGO-CuO Nanocompos ites for the Degradation of Organic Pollutants" Catalysts 11(8): DOI: 10.3390/catal11081008.
- [6] N. Madkhali, C. Prasad, K. Malkappa, H. Y. Choi, V. Govinda, I. Bahadur, and R. A. Abumousa, (2023) “Recent update on photocatalytic degradation of pollutants in waste water using TiOs-based heterostructured materials" Results in Engineering 17: DOI: 10.1016/j.rineng.2023.100920.
- [7] S. Nengsih, S. Nur Abdulmadjid, M. Mursal, and Z. Jalil, (2024) “Photocatalytic performance of Fe3O4-TiO2 in the degradation of methylene blue dye: Optimizing the usability of natural iron sand" Materials Science for Energy Technologies 7: 374–380. DOI: 10.1016/j.mset.2024.06.001.
- [8] S. Nengsih, S. N. Madjid, M. Mursal, R. Idroes, and Z. Jalil, (2023) “Magnetization Study of Iron Sand from Sabang, Indonesia: The Potential of Magnetic Materials in the Photocatalytic Field" Bulletin of Chemical Re action Engineering & Catalysis 18(2): 344–352. DOI: 10.9767/bcrec.19041.
- [9] L. Liu, Z. Cui, B. Feng, M. Sui, H. Huang, and Z. Wu, (2024) “Synthesis of Fe2O3/TiO2 Photocatalytic Composites for Methylene Blue Degradation as a Novel Strategy for High-Value Utilisation of Iron Scales" Materials (Basel) 17(18): DOI: 10.3390/ma17184546.
- [10] R. Sridevi, A. Prakasam, M. Karthik, P. M. An barasan, and K. Deepakavijay, (2025) “Synergistic g-C3N4/CoAl-LDH heterojunctions for superior visible light-driven hydrogen evolution and wastewater treatment" Journal of Materials Science: Materials in Electronics 36(27): DOI: 10.1007/s10854-025-15798-5.
- [11] N. Matinise, N. Botha, A. Fall, and M. Maaza, (2025) “Enhanced photocatalytic degradation of methylene blue using zinc vanadate nanomaterials with structural and electrochemical properties" Sci Rep 15(1): 26333. DOI: 10.1038/s41598-025-11418-8.
- [12] V. V. Deshmukh, C. R. Ravikumar, M. R. A. Kumar, S. Ghotekar, A. N.Kumar, A. A. Jahagirdar, and H. C. A. Murthy, (2021) “Structure, morphology and electrochemical properties of SrTiO3 perovskite: Photocatalytic and su percapacitor applications" Environmental Chemistry and Ecotoxicology 3: 241–248. DOI: 10.1016/j.enceco. 2021.07.001.
- [13] N. S. Peighambardoust and U. Aydemir, (2021) “Electrophoretic deposition and characterization of self-doped SrTiO3 thin films" Turk J Chem 45(2): 323–332. DOI: 10.3906/kim-2007-13.
- [14] Y. Wang, W. Ma, Y. Song, J. Chen, J. Xu, D. Wang, and Z. Mao, (2021) “Enhanced photocatalytic performance of SrTiO3 powder induced by europium dopants" Journal of Rare Earths 39(5): 541–547. DOI: 10.1016/j.jre.2020.07.002.
- [15] N. Pornnipa, K. Malinee, B. Theerachai, E.-U. Apiluck, and S. Tawat, (2022) “Effect of Nb doping on the structural, optical, and photocatalytic properties of SrTiO3 nanopowder synthesized by sol-gel auto combus tion technique" Journal of Asian Ceramic Societies 10(3): 583–596. DOI: 10.1080/21870764.2022.2094556.
- [16] M. Nawaz, Y. Mu, Y. Gao, S. Jiang, X. Liu, R. Tao, Z. Chu, X. Fan, and C. Xu, (2025) “Development of Z-scheme Al–SrTiO3/g-C3N4 heterojunctions with Co rhx/cr2-xo3 Co-catalysts for enhanced photocatalytic over all water splitting" International Journal of Hydro gen Energy 124: 84–91. DOI: 10.1016/j.ijhydene.2025. 03.377.
- [17] M. Abd Elkodous, A. M. El-Khawaga, M. M. Abouelela, and M. I. A. Abdel Maksoud, (2023) “Co catalyst loaded Al-SrTiO(3) cubes for Congo red dye photo degradation under wide range of light" Sci Rep 13(1): 6331. DOI: 10.1038/s41598-023-33249-1.
- [18] P. Krishna Murthy, K. S. Kiran, and E. Melagiriyappa, (2024) “Influence of Nd3+ on structural, electrical and magnetic properties of Ni-Cd nanoferrites" Physics Open21: DOI: 10.1016/j.physo.2024.100240.
- [19] Y. Faraj and R. Xie,(2022) “and Nanocomposites for Photocatalytic Decontamination" Nanocomposite Materials for biomedical and energy storage applications: 209.
- [20] H. Bantawal, U. S. Shenoy, and D. K. Bhat, (2020) “Vanadium-Doped SrTiO3 Nanocubes: Insight into role of vanadium in improving the photocatalytic activity" Applied Surface Science 513: DOI: 10.1016/j.apsusc.2020.145858.
- [21] E. K. A. Ardi, Y. Iriani, and D. Fasquelle, (2024) “Fer rite (Fe) Doping in Strontium Titanate (SrTi1-xFexO3) to Improve Photocatalytic Activity" Advances in Science and Technology 141: 71–76. DOI: https: //doi.org/10.4028/p-8dwrOk.
- [22] L. A. González, M. J. Cano-Valencia, and E. Vento Lujano, (2024) “Visible-light photocatalytic performance of SrTiOs nanoparticles modified with cobalt" Optical Materials 157: DOI: 10.1016/j.optmat.2024.116231.
- [23] Y. Iriani, R. Afriani, S. Dianisa Khoirum, and F. Nurosyid, (2022) “Co-precipitation Synthesis and Photocatalytic Activity of Mn-doped SrTiO3 for the Degradation of Methylene Blue Wastewater" Evergreen 9(4): 1039–1045. DOI: 10.5109/6625717.
- [24] R. F. Agustina, B. Suherman, L. U. Hasanah, N. F. S. Puspita, D. K. Sandi, F. Nurosyid, E. Handoko, and Y. Iriani, (2023) “Preparation of Nickel (Ni) doped SrTiO3 and effects of sintering temperatures on its properties as photocatalyst" Journal of Physics: Conference Series 2498(1): DOI: 10.1088/1742-6596/2498/1/012018.
- [25] Y. Iriani, D. K. Sandi, D. N. Hikmah, R. Afriani, F. Nurosyid, E. Handoko, and D. Faquelle, (2024) “Com parison study of aluminum (Al)-doped strontium titanate (SrAlxTi1-xO3; x= 3% and 5%) photocatalyst for methylene blue degradation" Materials Today: Proceedings:
- [26] D. Jiang, X. Sun, X. Wu, L. Shi, and F. Du, (2020) “Hydrothermal synthesis of single-crystal Cr-doped SrTiO3 for efficient visible-light responsive photocatalytic hydro gen evolution" Materials Research Express 7(1): DOI: 10.1088/2053-1591/ab660d.
- [27] R. Lopez-Juarez, (2021) “Microwave hydrothermal syn thesis and photocatalytic properties of Cr-doped SrTiO3 powders" Ceramics-Silikaty: 113–119. DOI: 10.13168/cs.2021.0009.
- [28] P. Nunocha, M. Kaewpanha, T. Bongkarn, A. Phu ruangrat, and T. Suriwong, (2021) “A new route to synthesizing La-doped SrTiO3 nanoparticles using the sol-gel auto combustion method and their characterization and photocatalytic application" Materials Science in Semiconductor Processing 134: DOI: 10.1016/j.mssp. 2021.106001.
- [29] Y. Iriani, N. F. S. Puspita, D. K. Sandi, F. Nurosyid, R. Suryana, and D. Fasquelle, (2024) “The Improved Photocatalytic Performance of Strontium Titanate (STO) Pow der Induced by Lanthanum Dopants" Iranian Journal of Materials Science and Engineering 21(4): 3645. DOI: 10.22068/ijmse.3645.
- [30] D. Anand, K. Ramachandran, P. Sakthivel, and M. Silambarasan, (2024) “Investigations of crystallographic, magnetic, optical and photoluminescence nature of Sm2O3 doped SrTiO3 nanomaterials for LED" Ceram ics International 50(18): 33590–33598. DOI: 10.1016/j.ceramint.2024.06.175.
- [31] Z.Aboub,B.Daoudi,andA.Boukraa,(2020)“Theoretical study of Ni doping SrTiO3 using a density functional theory" AIMS Materials Science 7(6): 902–910. DOI: 10.3934/matersci.2020.6.902.
- [32] Z. Aboub, T. Seddik, B. Daoudi, A. Boukraa, D. Behera, M. Batouche, and S. K. Mukherjee, (2023) “Im pact of La, Ni-doping on structural and electronic properties of SrTiO3 for photocatalytic water splitting" Inorganic Chemistry Communications 153: DOI: 10.1016/j.inoche.2023.110871.
- [33] F. T. Geldasa and F. B. Dejene, (2025) “Transition metal doping effects on the structural, mechanical, electronic, and optical properties of α-NiS for photocatalysis applications via DFT+U insights" Applied Physics A 131(11): DOI: 10.1007/s00339-025-08942-9.
- [34] D. Hamdi, D. Talantikite-Touati, A. Manseri, A. T. Khodja, and A. Souici, (2024) “Role of Nd doping on the structural, morphological and optical properties of Ba TiO3 nanoparticles hydrothermally synthesized" Optical Materials 152: DOI: 10.1016/j.optmat.2024.115387.
- [35] C. V. M. Hunize, M. A. Joseph, and K. P. Murali, (2022) “Synthesis and Dielectric Characterization of Nd Doped SrTiO3 Ceramics for Energy Storage Applications" Key Engineering Materials 928: 113–118. DOI: 10. 4028/p-v58473.
- [36] M.V.Talanov,A.I.Stash, S. A. Ivanov, E. S. Zhukova, B. P. Gorshunov, B. M. Nekrasov, A. V. Melentev, V. I. Kozlov, V. M. Cherepanov, S. Y. Gavrilkin, A. Y. Tsvetkov, I. A. Zavidovskiy, M. K. Tatmyshevskiy, M. Savinov, V. M. Talanov, and A. A. Bush, (2024) “Transition metal-doped SrTiO3: when does a tiny chemical impact have such a great structural response?" Journal of Materials Chemistry C 12(22): 8105–8118. DOI: 10.1039/d4tc00180j.
- [37] M. A. Kafeshani, V. Mahdikhah, and S. Sheibani, (2022) “Facile preparation and modification of SrTiO3 through Ni–Cd co-doping as an efficient visible-light driven photocatalyst" Optical Materials 133: DOI: 10. 1016/j.optmat.2022.113080.
- [38] L. C. O. Dacal, A. Cantarero, and V. Olevano, (2019) “Substrate strain and doping effects on the crystal structure of SrNbxTi1-x03" The European Physical Journal B 92(8): DOI: 10.1140/epjb/e2019-100120-4.
- [39] T. A. Ta, L. D. Pham, H. S. Nguyen, C. V. Hoang, C. H. Le, C. T. Dang, H. T. T. Nguyen, and N. V. Nguyen, (2017) “Structural and optical properties of SrTiO3 nano material obtained by sol-gel method" Communications in Physics 27(2): DOI: 10.15625/0868-3166/27/2/ 9631.
- [40] E. Rocha-Rangel, W. J. Pech-Rodríguez, J. López Hernández, C. A. Calles-Arriaga, E. N. Armendáriz Mireles, J. A. Castillo-Robles, and J. A. Rodríguez García, (2020) “Synthesis of SrTiO3 by the Calcination of SrCO3andTiO2Mixtures Intensively Ground By Means of High Energy Milling" Arch. Metall. Mater. 65(2): 621–626. DOI: 10.24425/amm.2020.132801.
- [41] G. Z. Girotto, A. S. Thill, L. P. Matte, M. A. H. Vogt, T. V. Machado, L. F. P. Dick, F. Mesquita, and F. Bernardi, (2022) “Ni/SrTiO3 Nanoparticles for Pho to degradation of Methylene Blue" ACS Applied Nano Materials 5(9): 13295–13307. DOI: 10.1021/acsanm.2c03007.
- [42] C. N. Botelho, S. S. Falcao, R. P. Soares, S. R. Pereira, A. S. de Menezes, L. T. Kubota, F. S. Damos, and R. C.S.Luz,(2022)“Evaluation of a photoelectrochemical platform based on strontium titanate, sulfur doped carbon nitride and palladium nanoparticles for detection of SARS CoV-2 spike glycoprotein S1" Biosens Bioelectron X 11: 100167. DOI: 10.1016/j.biosx.2022.100167.
- [43] S. K. Panagiotis, K. Ioannis, P. Dimitrios, and A. Tri antafyllos, (2018) “Development of SrTiO3 Photocatalysts with Visible Light Response Using Amino Acids as Dopant Sources for the Degradation of Organic Pollutants in Aqueous Systems" Catalysts 8(528): 1–18. DOI: 10.3390/catal8110528.
- [44] X.Yongmei, H.Zuming, S. Jiangbin, L. Ya, and T. Bin, (2018) “Fabrication and Photocatalytic Property of Novel SrTiO3/Bi5O7I Nanocomposites" Nanoscale Res Lett 13(1): 148. DOI: 10.1186/s11671-018-2558-6.
- [45] Z. Wu, Y. Zhang, X. Wang, and Z. Zou, (2017) “Ag@SrTiO3 nanocomposite for superphoto catalytic degradation of organic dye and catalytic reduction of 4 nitrophenol" New Journal of Chemistry 41(13): 5678–5687. DOI: 10.1039/c7nj00522a.
- [46] W. Yujuan and S. Jingjing, (2020) “Synthesis and Photocatalytic Mechanism of the Organic Functional Groups Decorated SrTiO3 Photocatalyst" Russian Journal of Physical Chemistry A 94(1): 211–219. DOI: 10.1134/s0036024420010355.
- [47] S. Landi, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, and C. J. Tavares, (2022) “Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements" Solid State Com munications 341: DOI: 10.1016/j.ssc.2021.114573.
- [48] Y. R. Wang, H. L. Tao, Y. Cui, S. M. Liu, M. He, B. Song, J. K. Jian, and Z. H. Zhang, (2020) “Investigations on tuning the band gaps of Al doped SrTiO3" Chemical Physics Letters 757: DOI: 10.1016/j.cplett. 2020.137879.
- [49] A. Ou-khouya, I. Ait Brahim, H. Ez-Zahraouy, A. Houba, H. Mes-Adi, and M. Tahiri, (2024) “First principles calculations to investigate impact of doping by chalcogen elements on the electronic, structural, and opti cal properties of SrTiO3 compounds" Chemical Physics 581: DOI: 10.1016/j.chemphys.2024.112253.
- [50] D. Kim, S. Gwon, K. Park, and E.-C. Jeon, (2024) “Structural and Optical Properties of SrTiOss-Based Ce ramics for Energy and Electronics Applications" Crystals 14(11): DOI: 10.3390/cryst14110942.
- [51] J. Živojinovi´c, V. P. Pavlovi´c, D. Kosanovi´c, S. Markovi´c, J. Krsti´c, V. A. Blagojevi´c, and V. B. Pavlovi´c, (2017) “The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders" Journal of Alloys and Compounds 695: 863–870. DOI: 10.1016/j.jallcom.2016.10.159.
- [52] N.Narayanan and N. Deepak, (2018) “Ga Dopant Induced Band Gap Broadening and Conductivity Enhancement in Spray Pyrolysed Zn0.85Ca0.15O thin Films" Materials Research 21(6): DOI: 10.1590/1980-5373 mr-2018-0034.
- [53] X. Tao, Y. Hua, D. Lijing, M. Jinyuan, Z. Haimin, and D. Jianfeng, (2014) “Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity" Nanoscale Research Letters 9:
- [54] Q. V. Vo, L. T. T. Thao, T. D. Manh, M. V. Bay, B. T. Truong-Le, N. T. Hoa, and A. Mechler, (2024) “Re action of methylene blue with OH radicals in the aqueous environment: mechanism, kinetics, products and risk assessment" RSC Adv 14(37): 27265–27273. DOI: 10. 1039/d4ra05437g.
- [55] I. Raheb and M. S. Manlla, (2021) “Kinetic and thermodynamic studies of the degradation of methylene blue by photo-Fenton reaction" Heliyon 7(6): e07427. DOI: 10.1016/j.heliyon.2021.e07427.
- [56] H. D. Tran, D. Q. Nguyen, P. T. Do, and U. N. P. Tran, (2023) “Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach" RSC Adv 13(25): 16915–16925. DOI: 10.1039/d3ra01970e.
- [57] G. Salehi, M. Bagherzadeh, R. Abazari, M. Hajilo, andD.Taherinia, (2024) “Visible Light-Driven Photocatalytic Degradation of Methylene Blue Dye Using a Highly Efficient Mg-Al LDH@g-C3N4@Ag3PO4 Nanocomposite" ACS Omega 9(4): 4581–4593. DOI: 10.1021/acsomega.3c07326.
- [58] T. Xian, H. Yan, L. J. Di, and J. F. Dai, (2015) “Enhanced photocatalytic activity of SrTiO3 particles by sur face decoration with Ag nanoparticles for dye degradation" Physica Scripta 90: 055801. DOI: 10.1088/0031 8949/90/5/055801.
- [59] S. Wardhani, D. Purwonugroho, C. W. Fitri, and Y. P. Prananto, (2018) “Effect of pH and irradiation time on TiO2-chitosan activity for phenol photo-degradation" Catalysis Letters 2021(1): 050009. DOI: 10.1063/1. 5062759.
- [60] J. Z. Bloh, (2021) “Intensification of Heterogeneous Photocatalytic Reactions Without Efficiency Losses: The Importance of Surface Catalysis" Catalysis Letters 151(11): 3105–3113. DOI: 10.1007/s10562-021-03573-0.
- [61] A. B. D. Nandiyanto, R. Zaen, and R. Oktiani, (2020) “Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles" Arabian Journal of Chemistry 13(1): 1283–1296. DOI: 10.1016/j.arabjc.2017.10.010.
- [62] G. M. Repa, Z. J. Knepp, and L. A. Fredin, (2024) “A-Site Doping to Alter Oxygen Vacancy Diffusion in SrTiO3" ACS Omega 9(24): 26719–26723. DOI: 10.1021/acsomega.4c04099.
- [63] Y. Bi, Z. Zhao, J. Qian, L. Chen, and C. Duan, (2024) “Coordination of Ti3+ and Ni3+ to promote the electrocatalytic OER properties of SrTiO3@TiO2 heterojunctions" Sustainable Energy & Fuels 8(15): 3341–3346. DOI: 10.1039/d4se00258j.