Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Trung-Kien Nguyen1This email address is being protected from spambots. You need JavaScript enabled to view it. and Thanh-Trung Vo2,3

1Faculty of Building and Industrial Construction, Hanoi University of Civil Engineering, Hanoi, Vietnam

2School of Transportation Engineering, Danang Architecture University, Danang city, Vietnam

3Office of Research Administration, Danang Architecture University, Danang city, Vietnam


 

 

Received: December 28, 2023
Accepted: April 21, 2024
Publication Date: May 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202503_28(3).0002  


Modeling the behavior of sandstone across the scales is a crucial subject of numerous research studies. Since the material is composed of smaller grains, its macroscopic mechanical behavior is thus dominant by the microscopic evolutions of the constituents. In this paper, a cross-scale model (CSM) intimately combines Finite Element Method (FEM), and Discrete Element Method (DEM) was developed. At the sample scale, FEM is used while DEM is employed to model grains’ interactions. Cross-scale simulation is then performed showing good correlation between numerical and experimental data on Fontainebleau sandstone. Remarkably, going down to the scale of material constituent, the result suggests that the shear band observed at sample scale are directly connected to the microscopic manifestation at grains scale. Three zones corresponding to the sample failure level are highlighted. Those are the core of SB where the material degrades the most, the adjacent zones where material are partly damaged and quasi-intact zones outside the SB. Microscopic properties in terms of void ratio and cohesive coordination number vary consistently with the identified zones.


Keywords: Cross-scales analysis; Macro-micro; Shear band; Sandstone


  1. [1] Y. Abdallah, J. Sulem, M. Bornert, S. Ghabezloo, and I. Stefanou, (2021) “Compaction banding in highporosity carbonate rocks: 1. Experimental observations" Journal of Geophysical Research: Solid Earth 126(1): e2020JB020538. DOI: 10.1029/2020JB020538.
  2. [2] P. Bésuelle and J. W. Rudnicki, (2004) “Localization: shear bands and compaction bands" INTERNATIONAL GEOPHYSICS SERIES. 89: 219–322.
  3. [3] M. Oda and K. Iwashita, (2000) “Study on couple stress and shear band development in granular media based on numerical simulation analyses" International journal of engineering science 38(15): 1713–1740. DOI: 10.1016/S0020-7225(99)00132-9.
  4. [4] N. Estrada, A. Lizcano, and A. Taboada, (2010) “Simulation of cemented granular materials. I. Macroscopic stress-strain response and strain localization" Physical Review E 82(1): 011303. DOI: 10.1103/PhysRevE.82.011303.
  5. [5] A. Ord, I. Vardoulakis, and R. Kajewski. “Shear band formation in Gosford sandstone”. In: International journal of rock mechanics and mining sciences & geomechanics abstracts. 28. 5. Elsevier. 1991, 397–409. DOI: 10.1016/0148-9062(91)90078-Z.
  6. [6] R. J. Finno, W. Harris, M. A. Mooney, and G. Viggiani, (1997) “Shear bands in plane strain compression of loose sand" Geotechnique 47(1): 149–165. DOI: 10.1680/geot.1997.47.1.149.
  7. [7] H. Wu, N. Guo, and J. Zhao, (2018) “Multiscale modeling and analysis of compaction bands in high-porosity sandstones" Acta Geotechnica 13: 575–599. DOI: 10.1007/s11440-017-0560-2.
  8. [8] P. Bésuelle, J. Desrues, and S. Raynaud, (2000) “Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell" International Journal of Rock Mechanics and Mining Sciences 37(8): 1223–1237. DOI: 10.1016/S1365-1609(00)00057-5.
  9. [9] A. El Bied, J. Sulem, and F. Martineau, (2002) “Microstructure of shear zones in Fontainebleau sandstone" International Journal of Rock Mechanics and Mining Sciences 39(7): 917–932. DOI: 10.1016/S1365-1609(02)00068-0.
  10. [10] J. Fonseca, P. Bésuelle, and G. Viggiani, (2013) “Micromechanisms of inelastic deformation in sandstones: an insight using x-ray micro-tomography" Géotechnique Letters 3(2): 78–83. DOI: 10.1680/geolett.13.034.
  11. [11] P. Bésuelle. “Déformation et rupture dans les roches tendres et les sols indurés: comportement homogène et localisation". (phdthesis). Université Joseph-FourierGrenoble I, 1999.
  12. [12] P. Baud, V. Vajdova, and T.-f. Wong, (2006) “Shearenhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones" Journal of Geophysical Research: Solid Earth 111(B12): DOI: 10.1029/2005JB004101.
  13. [13] M. P. Schöpfer and C. Childs, (2013) “The orientation and dilatancy of shear bands in a bonded particle model for rock" International Journal of Rock Mechanics and Mining Sciences 57: 75–88. DOI: 10.1016/j.ijrmms.2012.07.019.
  14. [14] J. R. Rice and J. Rudnicki, (1980) “A note on some features of the theory of localization of deformation" International Journal of solids and structures 16(7): 597–605. DOI: 10.1016/0020-7683(80)90019-0.
  15. [15] R. Chambon, S. Crochepeyre, and J. Desrues, (2000) “Localization criteria for non-linear constitutive equations of geomaterials" Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures 5(1): 61–82.
  16. [16] T. K. Nguyen, G. Combe, D. Caillerie, and J. Desrues, (2014) “FEM× DEM modelling of cohesive granular materials: numerical homogenisation and multi-scale simulations" Acta Geophysica 62: 1109–1126. DOI: 10.2478/s11600-014-0228-3.
  17. [17] J. Desrues, A. Argilaga, D. Caillerie, G. Combe, T. K. Nguyen, V. Richefeu, and S. Dal Pont, (2019) “From discrete to continuum modelling of boundary value problems in geomechanics: An integrated FEM-DEM approach" International Journal for Numerical and Analytical Methods in Geomechanics 43(5): 919–955. DOI: 10.1002/nag.2914.
  18. [18] P. A. Cundall and O. D. Strack, (1979) “A discrete numerical model for granular assemblies" geotechnique 29(1): 47–65. DOI: 10.1680/geot.1979.29.1.47.
  19. [19] M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford university press, 2017.
  20. [20] J.-Y. Delenne, M. S. El Youssoufi, F. Cherblanc, and J.-C. Bénet, (2004) “Mechanical behaviour and failure of cohesive granular materials" International Journal for Numerical and Analytical Methods in Geomechanics 28(15): 1577–1594. DOI: 10.1002/nag.401.
  21. [21] T.-K. Nguyen, J. Desrues, T.-T. Vo, and G. Combe, (2022) “FEM× DEM multi-scale model for cemented granular materials: Inter-and intra-granular cracking induced strain localisation" International Journal for Numerical and Analytical Methods in Geomechanics 46(5): 1001–1025. DOI: 10.1002/nag.3332.
  22. [22] T.-K. Nguyen. “On the Representative Volume Element of Dense Granular Assemblies Made of 2D Circular Particles”. In: Structural Health Monitoring and Engineering Structures: Select Proceedings of SHM&ES 2020. Springer, 2021, 499–508.


Latest Articles