- [1] S. K. Srivastava and K. L. Dhaker, (2024) “Data-driven approach for Cu recovery from hazardous e-waste" Pro cess Safety and Environmental Protection 183: 665–675.
- [2] J. Li, (2009) “Experimental research on recovery of copper from waste computer circuit boards" Hydrometallurgy 28(4): 225–228.
- [3] B.S.MahdiandA.H.Lafta,(2018)“Recovery of copper from copper slag by hydrometallurgy method, from Iraqi factories waste" Journal of University of Babylon for Pure and Applied Sciences 26(7): 179–199.
- [4] F.-R. Chou, R. Chauvy, and P.-C. Chen, (2024) “Exploring efficient copper recovery and recycling in Taiwan’s printed circuit board manufacturing through material f low cost accounting" Sustainable Production and Consumption 48: 84–98.
- [5] J. Che, W. Zhang, K. M. Deen, and C. Wang, (2024) “Eco-friendly treatment of copper smelting flue dust for recovering multiple heavy metals with economic and environmental benefits" Journal of Hazardous Materials 465: 133039.
- [6] J. Chen, Z. Wang, Y. Wu, L. Li, B. Li, D. Pan, and T. Zuo, (2019) “Environmental benefits of secondary copper from primary copper based on life cycle assessment in China" Resources, Conservation and Recycling 146: 35–44.
- [7] J. Hao, Z.-h. Dou, T.-a. Zhang, X.-y. Wan, and K. Wang, (2024) “Energy conservation and emission reduction through utilization of latent heat of copper slag for iron and copper recovery" Journal of Cleaner Production 436: 140602.
- [8] T. Wang, P. Berrill, J. B. Zimmerman, and E. G. Her twich, (2021) “Copper recycling flow model for the united states economy: Impact of scrap quality on potential energy benefit" Environmental science & technology 55(8): 5485–5495.
- [9] R. Sinha, G. Chauhan, A. Singh, A. Kumar, and S. Acharya, (2018) “A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste" Journal of environmental chemical engineering 6(1): 1053–1061.
- [10] X.Li,B.Ma,C.Wang,andY.Chen,(2024)“Sustainable recovery and recycling of scrap copper and alloy resources: A review" Sustainable Materials and Technologies 41: e01026.
- [11] D. Wieczorek and D. Kwa´sniewska, (2018) “Economic aspects of metals recover" Physical Sciences Reviews 3(4): 20180027.
- [12] A. Agrawal and K. Sahu, (2010) “Problems, prospects and current trends of copper recycling in India: An overview" Resources, Conservation and Recycling 54(7): 401–416.
- [13] Y. Liu, H. Wang, Y. Cui, and N. Chen, (2023) “Removal of copper ions from wastewater: a review" International journal of environmental research and public health 20(5): 3885.
- [14] M. Elzahaby, S. Nosier, G. Sedahmed, A. Fathalla, M. Abdel-Aziz, and D. El-Gayar, (2023) “Cementation of copper on zinc in an unsubmerged jet reactor" Canadian Metallurgical Quarterly 62(2): 311–321.
- [15] A. Konsowa, (2010) “Intensification of the rate of heavy metal removal from wastewater by cementation in a jet reactor" Desalination 254(1-3): 29–34.
- [16] A. Mubarak, A. El-Shazly, and A. Konsowa, (2004) “Recovery of copper from industrial waste solution by cementation on reciprocating horizontal perforated zinc disc" Desalination 167: 127–133.
- [17] S. Nosier and S. Sallam, (2000) “Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder" Separation and purification technology 18(2): 93–101.
- [18] A. El-Shazly, A. Nassr, A. Mubarak, and A. Zaatout, (2016) “Effect of operating conditions on the Cu2+ removal from wastewater by cementation on a fixed bed of zinc cylinders" Desalination and Water Treatment 57(48-49): 22835–22841.
- [19] H. Hassan, S. Nosier, I. Hassan, M. Abdel-Aziz, G. Sedahmed, and M. El-Naggar, (2022) “Mass transfer behaviour and energy utilization efficiency of gas sparged rotating cylinder reactor and possible ap plications" Chemical Engineering and Processing Process Intensification 178: 109043.
- [20] W.G.Davenport, M. J. King, M. E. Schlesinger, and A. K. Biswas. Extractive metallurgy of copper. Elsevier, 2002.
- [21] Y. P. Hung, N. Mohamed, and H. Darus, (2005) “Recovery of copper from strong chloride-based solution" Journal of Applied Science 5: 1328–1333.
- [22] A. Peters. Concise chemical thermodynamics. CRC Press, 2010.
- [23] R. Holze. Experimental electrochemistry: a laboratory textbook. John Wiley & Sons, 2019.
- [24] P. A. Bouis and P. Bouis. Reagent Chemicals. American Chemical Society, 2015.
- [25] B. Ibrahim, M. Abdel-Aziz, E. Z. El-Ashtoukhy, T. Zewail, A. Zatout, and G. Sedahmed, (2021) “Cementation of copper on zinc in agitated vessels equipped with perforated baffles as turbulence promoters" Mining, Metallurgy & Exploration 38(2): 1203–1213.
- [26] A. C. Ribeiro, M. A. Esteso, V. M. Lobo, A. J. Valente, S. M. Simoes, A. J. Sobral, and H. D. Burrows, (2005) “Diffusion coefficients of copper chloride in aqueous solu tions at 298.15 K and 310.15 K" Journal of Chemical &Engineering Data 50(6): 1986–1990.
- [27] F. J. Welcher. A text-book of quantitative inorganic analysis including elementary instrumental analysis (Vogel, Arthur I.) 1963.
- [28] F. C. Walsh. A first course in electrochemical engineering. Electrochemical consultancy, 1993.
- [29] A. Fathalla, E.-S. El-Ashtoukhy, M. Abdel-Aziz, G. Sedahmed, and M. El-Naggar, (2025) “Surface renewal driven copper recovery by cementation in a stirred reactor with a rotating wiper mechanism" Scientific Reports 15(1): 29257.
- [30] R. W. Revie and H. H. Uhlig. Corrosion and corrosion control. John Wiley & Sons, 2025.
- [31] F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine, et al. Fundamentals of heat and mass transfer. 1072. New York John Wiley & Sons, Inc., 1990.
- [32] M.Eisenberg, C. Tobias, and C. Wilke, (1954) “Ionic mass transfer and concentration polarization at rotating electrodes" Journal of the Electrochemical Society 101(6): 306.
- [33] C. J. Low, C. P. de Leon, and F. C. Walsh, (2005) “The rotating cylinder electrode (RCE) and its application to the electrodeposition of metals" Australian Journal of Chemistry 58(4): 246–262.
- [34] T. Stefanowicz, M. Osi´nska, and S. Napieralska Zagozda, (1997) “Copper recovery by the cementation method" Hydrometallurgy 47(1): 69–90.
- [35] G. Ascanio, B. Castro, and E. Galindo, (2004) “Mea surement of power consumption in stirred vessels—a re view" Chemical Engineering Research and Design 82(9): 1282–1290.