Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Yohanes Edi Gunanto1, Tesalonika Siregar2, Ferry Budhi Susetyo3, Jan Setiawan4,7This email address is being protected from spambots. You need JavaScript enabled to view it., Yunasfi4, Mashadi4, Suyanti5, Yana Taryana6, and Wisnu Ari Adi4

1Department of Teacher Professional Program (PPG)-Faculty of Education, Universitas Pelita Harapan, Tangerang, Banten 15118, Indonesia

2Department of Physics– University of Indonesia, Depok, Jawa Barat, 16424, Indonesia

3Department of Mechanical Engineering-Universitas Negeri Jakarta, Jakarta, 13220, Indonesia

4Research Center for Energy Materials-National Research and Innovation Agency, KST B.J. Habibie, Serpong, Tangerang Selatan, Banten, 15314, Indonesia

5Research Center for Minerals Technology-National Research and Innovation Agency, KST B.J. Habibie, Serpong, Tangerang Selatan, Banten, 15314, Indonesia

6Research Center for Telecommunication-National Research and Innovation Agency, KST Samaun Samadikun, Bandung, Jawa Barat, 40135, Indonesia

7Department of Electrical Engineering-Pamulang University, Serpong, Tangerang Selatan, Banten, 15310, Indonesia


 

Received: September 3, 2025
Accepted: November 10, 2025
Publication Date: November 30, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.2026.26030004  


The criterion for a good microwave absorbing material is a single-phase material with high magnetic and dielectric characteristics. This work presents a comprehensive study on the effect of Ce substitution with various concentrations (x = 0.0, 0.01, 0.03, and 0.05) on the structural, magnetic, and microwave absorption properties of cobalt ferrite synthesized by the solid-state reaction method. X-ray diffraction analysis shows single phase of cobalt ferrite. The presence of Ce3+ dopant ions in the structure results in an increase in the unit cell volume and atomic density, but the crystallite size decreases with increasing Ce3+ dopant ion concentration. Scanning Electron Microscope observations show that the particle size appears to decrease with increasing concentration of Ce3+ dopant ions. Magnetic properties measured using a Vibrating Sample Magnetometer show a decrease in saturation magnetization from 161.57 emu/g (x = 0) to 92.46 emu/g (x = 0.05) and an increase in the coercivity field from 270.50 Oe (x = 0) to 387.00 Oe (x = 0.05). These structural changes and magnetic properties of CoCexFe2−xO4 can affect the characteristics of its microwave absorption properties. These microwave absorption properties were analyzed using a vector network analyzer in the X-band frequency range (812 GHz ) and showed that the substitution of Ce3+ ions significantly improved its microwave absorption performance. The attenuation increased from 94.35% (x = 0) to 99.28% (x = 0.05). The composition CoCe0.05Fe1.95O4 (x = 0.05) shows the best performance and makes it one of the potential candidates for high-performance microwave absorption materials.


Keywords: Ce doped CoFe2O4, Magnetic properties, Microwave absorption, Solid state reaction.


  1. [1] A. Hashhash and M. Kaiser, (2016) “Influence of Ce Substitution on Structural, Magnetic and Electrical Prop erties of Cobalt Ferrite Nanoparticles" Journal of Electronic Materials 45: 462–472. DOI: 10.1007/s11664 015-4125-6.
  2. [2] D. Padalia, U. Johri, and M. Zaidi, (2016) “Effect of Cerium Substitution on Structural and Magnetic Proper ties of Magnetite Nanoparticles" Materials Chemistry and Physics169: 89–95. DOI: 10.1016/j.matchemphys.2015.11.034.
  3. [3] Y. Liu, X. Liu, and X. Wang, (2014) “Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites" Journal of Alloys and Compounds 584: 249–253. DOI: 10.1016/j.jallcom.2013.09.049.
  4. [4] N. u. H. Khan, Z. A. Gilani, M. Khalid, H. M. N. u. H. Khan Asghar, G. Hussain, M. A. Shar, S. M. Ali, M. A. Khan, F. A. Sheikh, and A. Alhazaa, (2023) “Impact of Cerium Substitution Cobalt-Zinc Spinel Ferrites for the Applications of High Frequency Devices" Physica B: Condensed Matter 660: 414873. DOI: 10.1016/j.physb.2023.414873.
  5. [5] M. Kamran and M. Anis-ur-Rehman, (2020) “Enhanced Transport Properties in Ce Doped Cobalt Ferrites Nanoparticles for Resistive RAM Applications" Journal of AlloysandCompounds822:153583. DOI:10.1016/j.jallcom.2019.153583.
  6. [6] M.N.AkhtarandM.A.Khan,(2018) “Effect of Rare Earth Doping on the Structural and Magnetic Features of Nanocrystalline Spinel Ferrites Prepared via Sol Gel Route" Journal of Magnetism and Magnetic Materials 460: 268–277. DOI: 10.1016/j.jmmm.2018.03.069.
  7. [7] S. Suwannatrai, D. Y. S. Yan, P. Khamdahsag, and V. Tanboonchuy, (2021) “Zeolite/Cerium Oxide Coat on Activated Alumina Ball for Arsenite Removal via Fixed-Bed Continuous Flow Adsorption Column" Ap plied Science and Engineering Progress 15: 22. DOI: 10.14416/j.asep.2021.11.004.
  8. [8] D. Jagadeeswara Rao, K. Bhargavi, A. Nayudu, V. Nagalakshmi, R. Madaka, S. S. Rao, and S. Yonatan Mulushoa, (2025) “Effect of Nd3+ and Ag+ Doped on Synthesis, Structural and Magnetic Properties of Sr1-xNdxAgyFe12-yO19 Nano Hexaferrite" Inorganic Chemistry Communications 176: 114279. DOI: 10. 1016/j.inoche.2025.114279.
  9. [9] M. Sharma, S. Yadav, J. Saini, and B. K. Kuanr, (2025) “Broadband Microwave Devices Based on Bi and Gd Co Doped YIG Ferrites" Journal of Materials Science: Materials in Electronics 36: 1030. DOI: 10.1007/s10854 025-15112-3.
  10. [10] S. I. Ahmad, A. Rauf, T. Mohammed, A. Bahafi, D. Ravi Kumar, and M. B. Suresh, (2019) “Dielectric, Impedance, AC Conductivity and Low-Temperature Mag netic Studies of Ce and Sm Co-Substituted Nanocrystalline Cobalt Ferrite" Journal of Magnetism and Magnetic Materials 492: 31906. DOI: 10.1016/j.jmmm.2019.165666.
  11. [11] S. Yasmeen, H. M. N. u. H. Khan Asghar, Z. A. Gilani, and M. Khalid, (2020) “Fabrication of Cerium Doped Nickel-Cobalt Ferrite by Co-Precipitation Method" Journal of Materials and Physical Sciences 1: 26–36. DOI: 10.52131/jmps.2020.0101.0004.
  12. [12] P. Monisha and S. S. Gomathi, (2024) “Improved photo catalytic performance in Ce3+ doped CoFe2O4 nanoparticles by modifying structural, optical, and magnetic properties" Materials Science in Semiconductor Processing 176: 108328. DOI: 10.1016/j.mssp.2024.108328.
  13. [13] K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, R. Thilak Kumar, S. K. Jaganathan, and A. Baykal, (2019) “Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles" Journal of Magnetism and Magnetic Materials 476: 157–165. DOI: 10.1016/j.jmmm.2018.09.089.
  14. [14] T. W. Mammo, N. Murali, Y. M. Sileshi, and T. Aruna mani, (2018) “Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of Co-ferrite materials" Physica B: Condensed Matter 531: 164–170. DOI: 10.1016/j.physb.2017.12.049.
  15. [15] M. Kamran, Y. Abbas, and M. Anis-ur-Rehman, (2023) “Effect of Ce3+ and La3+ co-substitution on trans port properties of spinel Co-Ferrites" Inorganic Chemistry Communications 155: 111034. DOI: 10.1016/j.inoche.2023.111034.
  16. [16] Yunasfi, A. Mulyawan, Mashadi, Suyanti, and W. Ari Adi, (2021) “Synthesis of NiCexFe(2-x)O4 (0 ≤ x ≤ 0.05) as Microwave Absorbing Materials via Solid State Reaction Method" Journal of Magnetism and Magnetic Materials 532: 167985. DOI: 10.1016/j. jmmm.2021.167985.
  17. [17] B. H. Toby, (2001) “EXPGUI, a graphical user interface for GSAS" Journal of Applied Crystallography 34: 210–213. DOI: 10.1107/S0021889801002242.
  18. [18] G. Nabi, W. Raza, M. A. Kamran, T. Alharbi, M. Rafique, M. B. Tahir, S. Hussain, N. R. Khalid, Q. Ul Aain, N. Malik, R. S. Ahmed, and C. B. Cao, (2020) “Role of cerium-doping in CoFe2O4 electrodes for high per formance supercapacitors" Journal of Energy Storage 29: 101452. DOI: 10.1016/j.est.2020.101452.
  19. [19] M.A. Almessiere, Y. Slimani, and A. Baykal, (2020) “Synthesis and characterization of Co1-2xNixMnxCeyFe2 yO4nanoparticles" Journal of Rare Earths 38: 188–194. DOI: 10.1016/j.jre.2019.07.005.
  20. [20] M. Mashadi, S. Suyanti, J. Setiawan, Y. Yunasfi, and W. A. Adi, (2023) “Magnetic and Microwave Absorbing Properties of Cerium Substituted Zinc Ferrite Synthesized Using Milling Technique" Journal of Superconductivity and Novel Magnetism 36: 721–731. DOI: 10.1007/s10948-023-06518-3.
  21. [21] S. Jan, P. Slamet, J. Agus, A. M. Husna, and H. Djoko. Phase Composition of Sintered AlCrFeNi. 908 KEM.2022. DOI: 10.4028/p-x59u2h.
  22. [22] S. Bahhar, A. Boutahar, L. H. Omari, H. Lemziouka, E. K. Hlil, H. Bioud, and E. Dhahri, (2021) “Structural, magnetic and magnetocaloric properties of TMCeFeO4 (TM=Mn,Co)spinel ferrites powders" Journal of Mag netism and Magnetic Materials 539: 168416. DOI: 10.1016/j.jmmm.2021.168416.
  23. [23] Y. Jin, W. Xiao, L. Ma, X. Liang, S. Ma, W. Sun, P. Zhang, J. Cui, and D. Wang,(2024) “Effect of Ce doping on electromagnetic characteristics and absorbing proper ties of M-type barium ferrite" Materials Today Communications 39: 108596. DOI: 10.1016/j.mtcomm.2024.108596.
  24. [24] B. Pandey, R. Srivastava, C. S. Joshi, and H. K. Verma, (2025) “Effect of cerium ion doping: Alteration in structural, dielectric and magnetic properties of manganese ferrite nanoparticles" Physica B: Condensed Matter 711: 417302. DOI: 10.1016/j.physb.2025.417302.
  25. [25] G. Qiao, W. Yang, Y. Lai, G. Tian, L. Zha, Q. Hu, S. Liu, C. Wang, J. Han, H. Du, Y. Yang, and J. Yang, (2018) “Crystal structure, magnetic and microwave absorption properties of Ce2-xSmxFe17N3-δ/paraffin composites" Materials Research Express 6: 016103. DOI: 10.1088/2053-1591/aae3c7.
  26. [26] T. S. Kumar, G. Sriramulu, P. Raju, T. Ramesh, K. Praveena, and S. Katlakunta, (2023) “Structural, Optical, Magnetic and Dielectric Properties of Ce Doped MgFe2O4 Prepared by Microwave Hydrothermal Method" ECS Journal of Solid State Science and Technology 12: 093014. DOI: 10.1149/2162-8777/acf7ef.
  27. [27] F. Chen, X. Wang, Y. Nie, Q. Li, J. Ouyang, Z. Feng, Y. Chen, and V. G. Harris, (2016) “Ferromagnetic resonance induced large microwave magnetodielectric effect in cerium doped Y3Fe5O12 ferrites" Scientific Reports 6: 28206. DOI: 10.1038/srep28206.
  28. [28] C. K. Kasar, U. S. Sonawane, J. P. Bange, and D. S. Patil, (2016) “Optical and structural properties of nanoscale undoped and cerium doped ZnO with granular morphology" Journal of Materials Science: Materials in Electronics 27: 11885–11889. DOI: 10.1007/s10854 016-5333-4.
  29. [29] J. Gubicza, L. Balogh, R. Hellmig, Y. Estrin, and T. Ungár, (2005) “Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis" Materials Science and Engineering: A 400-401: 334–338. DOI: 10.1016/j.msea.2005.03.042.
  30. [30] M. M. L. Sonia, S. Anand, V. M. Vinosel, M. Asisi Janifer, and S. Pauline, (2018) “Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel fer rite" Journal of Materials Science: Materials in Electronics 29: 15006–15021. DOI: 10.1007/s10854-018-9639-2.
  31. [31] S. Rehman, M. A. Almessiere, N. Tashkandi, A. Baykal, Y. Slimani, R. Jermy, V. Ravinayagam, and C. Yaman, (2019) “Fabrication of Spinel Cobalt Ferrite (CoFe2O4) Nanoparticles with Unique Earth Element Cerium and Neodymium for Anticandidal Activities" Chemistry Select 4: 14329–14334. DOI: 10.1002/slct.201901811.
  32. [32] R. C. Kambale, P. A. Shaikh, C. H. Bhosale, K. Y. Rajpure, and Y. D. Kolekar, (2009) “The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route" Smart Materials and Structures 18: 115028. DOI: 10.1088/ 0964-1726/18/11/115028.
  33. [33] M. Almessiere, Y. Slimani, H. El Sayed, and A. Baykal, (2019) “Morphology and magnetic traits of strontium nano hexaferrites: Effects of manganese/yttrium co substitution" Journal of Rare Earths 37: 732–740. DOI: 10.1016/j.jre.2018.09.014.
  34. [34] S. I. Ahmad, M. B. Suresh, and D. R. Kumar. “Structural, morphological, dielectric and room temperature magnetic studies of Ce3+ substituted nano crystalline cobalt ferrite”. In: 2019, 020085. DOI: 10.1063/1.5130295.
  35. [35] F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Moham madi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, and M. Shahedi Asl, (2020) “Magnetic CoFe2O4 nanoparticles doped with metal ions: A review" Ceramics International 46: 18391–18412. DOI: 10.1016/j.ceramint.2020.04.202.
  36. [36] G.Xi, T. Zhao, L. Wang, C. Dun, and Y. Zhang, (2018) “Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries" Physica B: Condensed Matter 534: 76–82. DOI: 10.1016/j.physb.2018.01.036.
  37. [37] G. Chandra, R. Srivastava, and K. Ashokan. “Structural and Magnetic Properties of Cerium Doped Cobalt Ferrite Nanoparticles”. In: 2014, 122–126. DOI: 10.7763/IPCSIT.2014.V59.22.
  38. [38] S. I. Ahmad, S. A. Ansari, and D. Ravi Kumar, (2018) “Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite" Materials Chemistry and Physics 208: 248–257. DOI: 10.1016/j.matchemphys.2018.01.050.
  39. [39] Y. Yunasfi, M. Mashadi, A. Mulyawan, and W. A. Adi, (2020) “Synthesis of NiLaxFe(2-x)O4 System as Microwave Absorber Materials by Milling Technique" Journal of Electronic Materials 49: 7272–7278. DOI: 10.1007/s11664-020-08489-w.
  40. [40] M.H.Shams,A.S.Rozatian,M.H.Yousefi,J. Valíˇcek, andV.Šepelák,(2016)“Effect of Mg2+andTi4+dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite" Journal of Magnetism and Magnetic Materials 399: 10–18. DOI: 10.1016/j.jmmm.2015.08.099.
  41. [41] Yunasfi, Mashadi, D. S. Winatapura, J. Setiawan, A. Mulyawan, M. Fakhrudin, Y. Taryana, N. Sudrajat, W. A. Adi, and Y. E. Gunanto, (2024) “Microwave ab sorbing material of cobalt lanthanum ferrite: the contribu tions of intrinsic and extrinsic factors on the microwave absorption properties" Applied Physics A 130: 921. DOI: 10.1007/s00339-024-08062-w.
  42. [42] W. Ari Adi, Y. Yunasfi, M. Mashadi, D. Sahidin Winatapura, A. Mulyawan, Y. Sarwanto, Y. Edi Gunanto, and Y. Taryana. “Metamaterial: Smart Magnetic Material for Microwave Absorbing Material”. In: 2019. DOI: 10.5772/intechopen.84471.
  43. [43] U. Jamwal, D. Singh, and K. L. Yadav, (2022) “Effect of Particle Size and MWCNTs Content on Microwave Absorption Characteristics of Cobalt" IEEE Transactions on Magnetics 58: 2200516. DOI: 10.1109/TMAG.2022. 3199582.
  44. [44] W. A. Adi, D. S. Winatapura, A. Mulyawan, D. Deswita, S. H. Dewi, Y. Yunasfi, M. Mashadi, and Y. Taryana, (2024) “Effect of anisotropy field on the resonance frequency and reflection loss shift character istics of barium hexaferrite ceramics" Physica Scripta 99: 125958. DOI: 10.1088/1402-4896/ad8f6b.
  45. [45] Y. Taryana, Y. Wahyu, A. Manaf, M. Manawan, and W. A. Adi, (2022) “Structural and microwave absorption properties of BaFe(12–2x)SnxZnxO19 (x=0.05-1.0) ceramic magnets" Materialia 23: 101455. DOI: 10.1016/ j.mtla.2022.101455.
  46. [46] Y. Deng, L. Li, L. Wang, N. Wu, H. Jin, F. Gao, and Z. Zeng, (2024) “Rare earth Ce-doped W-type barium ferrites for tunable electromagnetic waves absorption performance" Materials Research Bulletin 176: 112792. DOI: 10.1016/j.materresbull.2024.112792.
  47. [47] I. C. Gonçalves, R. S. de Biasi, A. B.-H. d. S. Figueiredo, C. L. de Oliveira, and J. B. de Campos, (2024) “Microwave absorption by Co/Ce ferrite nanoparticles" Observatorio de la Economía Latinoamericana 22: e7243. DOI: 10.55905/oelv22n10-135.
  48. [48] C. Lei, S. Yu, Y. Wu, Y. Xie, C. Liu, and J. Luo, (2024) “Controllable synthesis of CeFeO3/Fe2Fe3O4/C composites with improved microwave absorption performances" Car bon 222: 118972. DOI: 10.1016/j.carbon.2024.118972.
  49. [49] M. Hashim, M. Raghasudha, S. S. Meena, J. Shah, S. E. Shirsath, S. Kumar, D. Ravinder, P. Bhatt, Alimuddin, R. Kumar, and R. Kotnala, (2018) “Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites" Journal of Magnetism and Magnetic Materials 449: 319–327. DOI: 10.1016/j.jmmm.2017.10.023.
  50. [50] L. Yuan, L. Xiang Xuan, L. Rong, and L. Ying, (2015) “Fabrication and electromagnetic wave absorption of novel Ni0.4Zn0.2Mn0.4Ce0.06Fe1.94O4–carbonyl iron composites" RSC Advances 5: 18660–18665. DOI: 10.1039/C4RA14846K.
  51. [51] R. M. Asif, A. Aziz, M. N. Akhtar, M. A. Khan, M. N. Abbasi, and H. Abdul Muqeet, (2024) “Synthesis and characterization of cerium doped Ni Zn nano ferrites as substrate material for multi band MIMO antenna" PLOS ONE 19: e0305060. DOI: 10.1371/journal.pone.0305060.
  52. [52] ˙ I. Araz, (2019) “The effect of Ce-Co substitution on the structural and the electromagnetic properties of barium hexaferrite" Journal of Materials Science: Materials in Electronics 30: 5130–5136. DOI: 10.1007/s10854 019-00811-5.
  53. [53] M. Okutan, M. Öztürk, A. Kırsoy, ˙ I. Araz, T. Yener, and O. Yalçın, (2022) “Analysis of electromagnetic properties of Ce–Zn substituted barium hexaferrite for electronic circuit applications" Physica B: Condensed Mat ter 630: 413608. DOI: 10.1016/j.physb.2021.413608.
  54. [54] M. Hasan, M. Khan, M. Amami, A. Laref, B. Nie, and J. Liu, (2024) “Comprehensive structural, optical, electrical, dielectric and magnetic analysis of co-precipitated Mg-Zn-Cu-Ce soft ferrites" Inorganic Chemistry Communications 167: 112666. DOI: 10.1016/j.inoche.2024.112666.
  55. [55] B. Naresh and J. Laxman Naik, (2024) “Investigation of structural, magnetic, and electric properties of Ni-Cr Bi nano ferrites an effect of rare earth cerium element by sol-gel auto combustion method" Results in Physics 59: 107553. DOI: 10.1016/j.rinp.2024.107553.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.