Huu-Phuc Kieu1, Duc-Luong Nguyen2, Tuan-Anh Pham2, and Phuong Vu2This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul, Korea

2School of Electrical and Electronic Engineering, Ha Noi University of Science and Technology, Hanoi, Viet Nam


 

 

Received: May 19, 2024
Accepted: June 22, 2025
Publication Date: August 7, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(4).0014  


This paper proposes a converter configuration for V2L (Vehicle-to-Load) applications in EVs consisting of two conversion stages (DC/DC and DC/AC) and focuses on optimizing the transformer turn ratio to improve the efficiency of the DC/DC converter stage for this application. The proposed DC/DC converter is combining from a two-phase interleaved Boost converter and a full-bridge LLC circuit together by virtue of sharing the same full-bridge switching unit. By combining the two converters, 4 switches are eliminated, reducing the volume by 15.5% and cost by 146$. Since the converter operates as a single-stage converter, efficiency can improve by 0.8% compared to conventional two-stage converter. Main system characteristics are presented, followed by the optimal design process for the turn ratio of the transformer in the converter with key parameters. Simulation results from Plecs software with input range of 260 −460 V, output voltage of 400 V , fixed operated switching frequency of 100 kHz, and 2.4 kW are provided to validate the design process. Finally, a comparison of efficiency is made with conventional two-stage converter.


Keywords: Vehicle-to-Load; IBFB-LLC resonant converter; Soft-switching ZVS; Electric vehicles.


  1. [1] A. Bhosale and S. Mastud, (2023) “Comparative environmental impact assessment of battery electric vehicles and conventional vehicles: A case study of India" Int. J. Eng. 36: 965–978. DOI: 10.5829/IJE.2023.36.05B.13.
  2. [2] M. Z. Hauschild. “Life cycle assessment: goal and scope definition”. In: CIRP Encyclopedia of Production Engineering. Springer, 2018, 1–6. DOI: 10.1007/978-3-319-56475-3.
  3. [3] N. S. Pearre and H. Ribberink, (2019) “Review of re search on V2X technologies, strategies, and operations" Renewable and Sustainable Energy Reviews 105: 61–70. DOI: 10.1016/j.rser.2019.01.047.
  4. [4] M. R. H. Mojumder, F. Ahmed Antara, M. Hasanuz zaman, B. Alamri, and M. Alsharef, (2022) “Electric vehicle-to-grid (V2G) technologies: Impact on the power grid and battery" Sustainability 14(21): 13856. DOI: 10.3390/su142113856.
  5. [5] B. Bibak and H. Tekiner-Mo˘gulkoç, (2021) “A com prehensive analysis of Vehicle to Grid (V2G) systems and scholarly literature on the application of such systems" Renewable Energy Focus 36: 1–20. DOI: 10.1016/j.ref.2020.10.001.
  6. [6] C. Liu, K. Chau, D. Wu, and S. Gao, (2013) “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies" Proceedings of the IEEE 101(11): 2409–2427. DOI: 10.1109/JPROC.2013.2271951.
  7. [7] N. Xu and C. Chung, (2015) “Reliability evaluation of distribution systems including vehicle-to-home and vehicle-to-grid" IEEE transactions on power systems 31(1): 759–768. DOI: 10.1109/TPWRS.2015.2396524.
  8. [8] S. R. Bondalapati, B. N. Bhukya, G. P. Anjaneyulu, M. Ravindra, and B. S. Chandra, (2023) “Bidirectional Power Flow between Solar Integrated Grid to Vehicle Vehicle to Grid and Vehicle to Home" Journal of Applied Science and Engineering 27(5): 2571–2581. DOI: 10. 6180/jase.202405_27(5).0014.
  9. [9] M. Ahmadigorji and M. Mehrasa, (2023) “A Robust Renewable Energy Source-oriented Strategy for Smart Charging of Plug-in Electric Vehicles Considering Di verse Uncertainty Resources" International Journal of Engineering, Transactions A: Basics 36(4): 709–719. DOI: 10.5829/IJE.2023.36.04A.10.
  10. [10] M. Gholami and M. Sanjari, (2023) “Optimal operation of multi-microgrid system considering uncertainty of electric vehicles" International Journal of Engineering, Transactions B: Applications 36(8): 1398–1408. DOI: 10.5829/IJE.2023.36.08B.01.
  11. [11] S. Tian, G. Razeghi, and S. Samuelsen, (2024) “Assessment of vehicle-to-load in support of home appliances" Journal of Energy Storage 104: 114406. DOI: 10.1016/j.est.2024.114406.
  12. [12] Information on 2023 Ford F-150 Lightning. 2023. URL: https: //www.meeganford.com/2023-ford-f-150-lightning.htm.
  13. [13] Information on EVDatabase. URL: https: //ev-database.org.
  14. [14] S. Kumar, B. Ramalingam, and K. Yadav. “A Novel Circuit Topology for Vehicle to Load (V2L) Application”. In: 2023 9th International Conference on Electrical Energy Systems (ICEES). IEEE. 2023, 300–305. DOI: 10.1109/ICEES57979.2023.10110048.
  15. [15] Y. Liu, X. Wang, W. Qian, A. Janabi, B. Wang, X. Lu, K. Zou, C. Chen, and F. Z. Peng. “DC voltage control of inverter interfaced dual active bridge converter for V2L applications”. In: 2019 IEEE 7th workshop on wide bandgap power devices and applications (WiPDA). IEEE. 2019, 319–324. DOI: 10.1109/WiPDA46397.2019.8998961.
  16. [16] S. Dutta, A. K. Rathore, and V. Khadkikar, (2023) “Single-phase bridgeless converter for on-board EV charger with flexible charging capabilities" IEEE Journal of Emerging and Selected Topics in Industrial Electronics 4(4): 1170–1180. DOI: 10.1109/JESTIE.2023.3270107.
  17. [17] A. Bandani and F. Barati, (2022) “Stable Operation Limits in Dual Active Bridge for Super Capacitor Applications" Int. J. Eng. Trans. B Appl 35(5): 875–882. DOI: 10.5829/IJE.2022.35.05B.04.
  18. [18] M. Deepak, G. Janaki, and C. Bharatiraja. “Single phase shift dual active bridge high frequency DC-DC converter for electric vehicle battery charger 6.6 kW”. In: 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE. 2023, 1–6. DOI: 10.1109/ICECCT56650.2023.10179621.
  19. [19] C. Calderon, A. Barrado, A. Rodriguez, A. Lazaro, C. Fernandez, and P. Zumel. “Dual active bridge with triple phase shift by obtaining soft switching in all operating range”. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE. 2017, 1739 1744. DOI: 10.1109/ECCE.2017.8096004.
  20. [20] H. Al Attar, M. Hamida, M. Ghanes, and M. Taleb. “Model Free Control design of DC-DC LLC converter with phase shift modulation in V2X mode for EV charger application”. In: 2022 IEEE Conference on Con trol Technology and Applications (CCTA). IEEE. 2022, 734–739. DOI: 10.1109/CCTA49430.2022.9966005.
  21. [21] X. Sun, Y. Shen, Y. Zhu, and X. Guo, (2014) “Interleaved boost-integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications" IEEE Transactions on Power Electronics 30(8): 4312–4326. DOI: 10.1109/TPEL.2014. 2358453.
  22. [22] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang. “LLC resonant converter for front end DC/DC conversion”. In: APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335). 2. IEEE. 2002, 1108–1112. DOI: 10.1109/APEC.2002.989382.
  23. [23] H .AlAttar, M. A. Hamida, M. Ghanes, and M. Taleb, (2023) “Review on modeling and control strategies of DC–DCLLC converters for bidirectional electric vehicle charger applications" Energies 16(9): 3946. DOI: 10.3390/en16093946.
  24. [24] M. Rad and A. Taheri, (2015) “Digital controller design based on time domain for dc-dc buck converter" International Journal of Engineering-Transactions B: Applications 28(5): 693–700. DOI: 10.5829/idosi.ije.2015.28.05b.07.
  25. [25] V. K. Kannan, N. Rengarajan, et al., (2013) “Control of Photovoltaic System with A DC-DC Boost Converter Fed DSTATCOM Using Icos Φ Algorithm" Journal of Applied Science and Engineering 16(1): 89–98. DOI: 10.6180/jase.2013.16.1.12.
  26. [26] N. Zanatta, T. Caldognetto, D. Biadene, G. Spiazzi, and P. Mattavelli, (2023) “A two-stage DC-DC isolated converter for battery-charging applications" IEEE Open Journal of Power Electronics 4: 343–356. DOI: 10. 1109/OJPEL.2023.3271227.
  27. [27] P. Wen, C. Hu, H. Yang, L. Zhang, C. Deng, Y. Li, and D. Xu. “Atwostage DC/dcconverter with wide input range for EV”. In: 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA). IEEE. 2014, 782–789. DOI: 10.1109/IPEC.2014.6869676.
  28. [28] H. Chih-Chiang and J.-B. Lai, (2024) “A Bidirectional Isolated DC-to-DC Converter with Hybrid Control of Pulse Width Modulation and Pulse Frequency Modulation" Processes 12(12): 2866. DOI: 10.3390/ pr12122866.
  29. [29] H.P. Vu, T. A. Do, M. L. Nguyen, and Q. D. Nguyen, (2021) “Design and Implementation of 2.5 kW IBFB-LLC DC/DC Converter Using SiCMosfet" JST: Engineering And Technology For Sustainable Development 31(2): 7–14. DOI: 10.51316/jst.149.etsd.2021.31.2.2.
  30. [30] X. Wang, Y. Liu, W. Qian, B. Wang, X. Lu, K. Zou, N. González-Santini, U. Karki, F. Z. Peng, and C. Chen. “A 25kW SiC universal power converter building block for G2V, V2G, and V2L applications”. In: 2018 IEEE international power electronics and application con ference and exposition (PEAC). IEEE. 2018, 1–6. DOI: 10.1109/PEAC.2018.8590435.
  31. [31] X. Wang, Y. Liu, W. Qian, A. Janabi, B. Wang, X. Lu, K. Zou, C. Chen, andF. Z.Peng. “Design, and control of a SiC isolated bidirectional power converter for V2L applications to both DC and AC load”. In: 2019 IEEE 7th workshop on wide bandgap power devices and applications (WiPDA). IEEE. 2019, 143–150. DOI: 10. 1109/WiPDA46397.2019.8998951.
  32. [32] J. A. Rahavi, T. Kanagapriya, and R. Seyezhai. “De sign and analysis of interleaved boost converter for renewable energy source”. In: 2012 International Con ference on Computing, Electronics and Electrical Tech nologies (ICCEET). IEEE. 2012, 447–451. DOI: 10.1109/ICCEET.2012.6203850.