Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Zuoping Zhao1This email address is being protected from spambots. You need JavaScript enabled to view it., Dongyang Li2, and Zhengjian Lai3

1College of Engineering, Yanbian University, Yanji, 133002, China

2Technology Center, Nanyang Beifangxiangdong Industrial Co., Ltd., Nanyang, 474677, China

3College of Automotive Technology, Sichuan Vocational and Technical College, Suining, 629099, China


 

Received: September 8, 2025
Accepted: December 14, 2025
Publication Date: January 10, 2026

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202607_30.028  


In control systems, obtaining reliable filtered signals and their derivatives simultaneously from noise contaminated inputs represents a key challenge. To this end, this paper presents a novel sliding mode filter for f iltering noise and estimating derivatives. The proposed filter enhances conventional parabolic sliding mode design by introducing a fast factor that boosts the response speed without sacrificing filtering performance, and the system stability is further analyzed via the Lyapunov method. In addition, the discrete-time algorithm is derived via the implicit-Euler method; the resulting output signals are far less likely to exhibit chattering than those from the conventional explicit-Euler discretization, and numerical simulations verify its effectiveness.


Keywords: sliding mode; filtering performance; implicit-Euler; chattering phenomenon


  1. [1] S. Jin, R. Kikuuwe, and M. Yamamoto, (2014)“Im proving Velocity Feed back for Position Control by Using a Discrete-time Sliding Mode Filtering with Adaptive Windowing "Advanced Robotics28(14): 943–953.DOI: 10.1080/01691864.2014.899161.
  2. [2] S. Jin,R.Kikuuwe,andM.Yamamoto, (2012)“Parameter Selection Guidelines for a Parabolic Sliding Mode Filter Based on Frequency and Time Domain Characteristics "Journal of Control Science and Engineering 2012:923679. DOI:10.1155/2012/923679.
  3. [3] S.Ahmed,B.Huang,andS.L.Shah,(2006)“Parameter and Delay Estimation of Continuous-time Models Using a Linear Filter "Journal of Process Control 16(4): 323–331.DOI:10.1016/j.jprocont.2005.07.003.
  4. [4] W.Xu,H.Zhao,andS.Lv,(2022) “Robust Constrained Affine-Projection-Like Adaptive Filtering Algorithms Using the Modified Huber Function" IEEE Transactions on Circuits and Systems II: Express Briefs 70(3): 1214–1218. DOI: 10.1109/TCSII.2022.3218714.
  5. [5] S. Goyal and R. Singh, (2023) “Detection and Classification of Lung Diseases for Pneumonia and Covid-19 Using Machine and Deep Learning Techniques" Journal of Ambient Intelligence and Humanized Computing 14(4): 3239–3259. DOI: 10.1007/s12652-021-03464-7.
  6. [6] X. Huang, C. Yang, and M. Wen, (2024) “A Sliding Window Filter with GNSS-State Constraint for RTK-Visual-Inertial Navigation" IEEE Transactions on Robotics 40: 1920–1937. DOI: 10.1109/TRO.2024. 3365008.
  7. [7] D. Meng, Z. Ma, and W. Liu, (2024) “A Robust Observer-Based Control Structure for Permanent Magnet Synchronous Motor Drives Based on MPC and Sliding Mode Observation" Journal of Applied Science and Engineering 28(6): 1253–1264. DOI: 10.6180/jase. 202506_28(6).0008.
  8. [8] S. M. Rakhtala, R. Ghaderi, and N. A. Ranjbar. “Pro long the Stack Life of PEM Fuel Cell System via Higher Order Sliding Mode Control”. In: Proceedings of the 2nd International Conference on Control, Instrumentation and Automation. 2011, 13–18. DOI: 10.1109/ICCIAutom.2011.6356623.
  9. [9] N. Mirrashid, S. M. Rakhtala, and M. Ghanbari, (2018) “Robust Control Design for Air Breathing Pro ton Exchange Membrane Fuel Cell System via Variable Gain Second-Order Sliding Mode" Energy Science and Engineering 6(3): 126–143. DOI: 10.1002/ese3.199.
  10. [10] K. Chenchireddy and V. Jegathesan, (2023) “Improved Voltage Balancing Scheme for the MLI Based DSTAT COM with Sliding Mode Controller" Journal of Ap plied ScienceandEngineering27(8):2937–2946. DOI: 10.6180/jase.202408_27(8).0002.
  11. [11] Y.Gao, X. Li, W. Zhang, D. Hou, andL.Zhang, (2020) “A Sliding Mode Control Strategy with Repetitive Sliding Surface for Shunt Active Power Filter with an LCLCL Fil ter" Energies 13(7): 1740. DOI: 10.3390/en13071740.
  12. [12] X. Yu, Y. Feng, and Z. Man, (2020) “Terminal Sliding Mode Control–An Overview" IEEE Open Journal of the Industrial Electronics Society 2: 36–52. DOI: 10.1109/OJIES.2020.3040412.
  13. [13] X. Wu, W. Bai, Y. Xie, Q. Ma, and X. Song, (2023) “Nonlinear Predictive Control with Sliding Mode for Hypersonic Vehicle" International Journal of Aerospace Engineering 1: 1215361. DOI: 10.1155/2023/1215361.
  14. [14] J. Han and W. Wang, (1994) “Nonlinear Tracking differentiator" Journal of Systems Science and Mathematical Science (in Chinese) 14(2): 177–183. DOI: 10.12341/jssms09102.
  15. [15] S. Jin, R. Kikuuwe, and M. Yamamoto, (2012) “Real time Quadratic Sliding Mode Filter for Removing Noise" Advanced Robotics 26(8-9): 877–896. DOI: 10.1163/156855312X633011.
  16. [16] Z. Lv, S. Jin, X. Xiong, and J. Yu, (2019) “A New Quick Response Sliding Mode Tracking Differentiator with Its Chattering-Free Discrete-Time Implementation" IEEE Access 7: 130236–130245. DOI: 10.1109/ACCESS. 2019.2940262.
  17. [17] S. Jin, Z. Lv, X. Xiong, and J. Yu, (2020) “A Chattering Free Sliding Mode Filter Enhanced by First Order Derivative Feedforward" IEEE Access 8: 41175–41185. DOI: 10.1109/ACCESS.2020.2976737.
  18. [18] J. Yu, S. Jin, Z. Lv, and X. Xiong. “Discrete-Time Sliding Mode Filter with Parameter Adaptation”. In: 39th Chinese Control Conference. 2020, 2061–2066. DOI: 10.23919/CCC50068.2020.9189498.
  19. [19] B. Wang, N.-V. Truong, B. Brogliato, and S. Khoo. “The Oscillation Behaviors in Euler Discretized Terminal Sliding Mode Control Systems”. In: 2013 Inter national Conference on Control, Automation and Information Sciences. 2013, 201–205. DOI: 10.1109/ICCAIS. 2013.6720554.
  20. [20] Z. Zhao and D. Li, (2025) “A New Filter Based on Sliding Mode Method with Discrete-Time Implementation for Noise Attenuation and Differentiation" Advanced Theory and Simulations 8(2): 2400835. DOI: 10.1002/ adts.202400835.
  21. [21] X. Shao and H. Wang, (2016) “Back-stepping Robust Trajectory Linearization Control for Hypersonic Reentry Vehicle via Novel Tracking Differentiator" Journal of the Franklin Institute 353(9): 1957–1984. DOI: 10.1016/j. jfranklin.2016.03.007.
  22. [22] A. Levant and X. Yu, (2018) “Sliding-mode-based Differentiation and Filtering" IEEE Transactions on Automatic Control 63(9): 3061–3067. DOI: 10.1109/TAC. 2018.2797218.
  23. [23] M.R.Mojallizadeh, B. Brogliato, A. Polyakov, S. Sel varajan, L. Michel, F. Plestan, M. Ghanes, J. Barbot, and Y. Aoustin, (2023) “A Survey on the Discrete-Time Differentiators in Closed-Loop Control Systems: Experiments on an Electro-Pneumatic System" Control Engineering Practice 136: 105546. DOI: 10.1016/j.conengprac.2023.105546.
  24. [24] M.R.Mojallizadeh, B. Brogliato, and V. Acary, (2021) “Time-Discretizations of Differentiators: Design of Implicit Algorithms and Comparative Analysis" International Journal of Robust and Nonlinear Control 31(16): 7679–7723. DOI: 10.1002/rnc.5710.
  25. [25] M. R. Mojallizadeh and B. Brogliato. “Effect of Euler Explicit and Implicit Time Discretizations on Variable-Structure Differentiators”. In: Sliding-mode Control and Variable-structure Systems: The State of the Art. Springer International Publishing, 2023, 165–180. DOI: 10.1007/978-3-031-37089-2_7.
  26. [26] B.Brogliato, A. Polyakov, and D. Efimov, (2019) “The Implicit Discretization of the Supertwisting Sliding-Mode Control Algorithm" IEEE Transactions on Automatic Control 65(8): 3707–3713. DOI: 10.1109/TAC.2019. 2953091.
  27. [27] J. E. Carvajal-Rubio, J. D. Sánchez-Torres, M. Defoort, M. Djemai, and A. G. Loukianov, (2021) “Implicit and Explicit Discrete-Time Realizations of Homogeneous Differentiators" International Journal of Robust and Nonlinear Control 31(9): 3606–3630. DOI: 10.1002/rnc.5505.
  28. [28] J. E. Carvajal-Rubio, M. Defoort, J. D. Sánchez-Torres, M. Djemai, and A. G. Loukianov, (2022) “Implicit and Explicit Discrete-Time Realizations of the Robust Exact Filtering Differentiator" Journal of the Franklin Institute 359(8): 3951–3978. DOI: 10.1016/j.jfranklin. 2022.03.007.
  29. [29] F. Miranda-Villatoro, F. Castaños, and B. Brogliato, (2025) “An Optimization Perspective on Discrete-Time Sliding Modes: When Proximal-Point Algorithms Meet Set-Valued Systems" IEEE Control Systems 45(5): 47 94. DOI: 10.1109/MCS.2025.3587510.
  30. [30] R. Seeber, (2025) “Proper Implicit Discretization of Arbitrary-Order Robust Exact Differentiators—Without and With Noise Filtering" International Journal of Robust and Nonlinear Control 35: 7860–7880. DOI: 10.1002/rnc.70005.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.