Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Lobes HerdimanThis email address is being protected from spambots. You need JavaScript enabled to view it., Susy Susmartini, Taufiq Rochman, and Faradhiya Artanty

Department of Industrial Engineering, Laboratory of Product Planning and Design Universitas Sebelas Maret, Indonesia


 

 

Received: November 27, 2023
Accepted: June 10, 2024
Publication Date: July 11, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202505_28(5).0014  


This study will use Kinovea videography techniques to use a walker trainer in children with diplegic cerebral palsy (CDCP) so that it can be suggested for walking therapy. This study included six CDCPs from the Rehabilitation Center Clinic of the Yayasan Pembinaan Anak Cacat in Surakarta, Indonesia. The accuracy of using a walker trainer will determine the success rate of walking therapy and improve the quality of life of CDCP with lower extremity motor deficits. Therapists in CDCP gait assessment (GA) prioritize subjective perception. Objective measures of GA are rarely reported, potentially leading to assessment errors. CDCP conducts an objective gait to adjust for therapist constraints and the Kinovea videography. Quantitative measurements of gait function on CDCP include gait parameters and body flexion: arm, trunk, and knee, which will provide a comprehensive analysis of GA. This study will use the Kinovea videography technique to analyze GA and body flexion in CDCP, with tests using the anterior walker (AW) and suspension walker (SW) to assess walking progress. The quantitative value of movement detection utilizing Kinovea is determined by videographic recording, allowing CDCP rehabilitation progress. The t-test statistic was used to compare CDCP individual functional data, including gait and body flexion parameters, with a p-value ​<0.05 considered statistically significant. The study’s findings and videography show that the sagittal plane of GA improves individual functions, and SW improves walking ability by 70% and body posture by 20%. Finally, the Kinovea-based videography approach improved GA for CDCP’s accuracy when using the walker trainer.


Keywords: Kinovea, Gait assessment, children with diplegia cerebral palsy, walker trainer


  1. [1] P. A. Potter, A. G. E. Perry, A. E. Hall, and P. A. Stockert. Fundamentals of nursing. Elsevier mosby, 2009.
  2. [2] M. M. Jan, (2006) “Cerebral palsy: comprehensive review and update" Annals of Saudi medicine 26(2): 123–132. DOI: 10.5144/0256-4947.2006.123.
  3. [3] T. P. Alloway, S. E. Gathercole, A.-M. Adams, and C. Willis, (2005) “Working memory abilities in children with special educational needs" Educational and child psychology 22(4): 56–67. DOI: 10.53841/bpsecp.2005.22.4.56.
  4. [4] D. R. Desiningrum. Psikologi anak berkebutuhan khusus. 2017.
  5. [5] D. R. Patel, M. Neelakantan, K. Pandher, and J. Merrick, (2020) “Cerebral palsy in children: a clinical overview" Translational pediatrics 9(Suppl 1): S125. DOI: 10.21037/tp.2020.01.01.
  6. [6] T. G. Buruk, “Pencegahan dan Tatalaksana Gizi Buruk pada Balita":
  7. [7] Q. Salfi, D. Saharso, and A. Atika, (2019) “Profile of cerebral palsy patients in Dr" Soetomo General Hospital Surabaya, Indonesia. Biomoleculer and Health Science Journal 2(1): 13. DOI: 10.20473/bhsj.v2i1.12803.
  8. [8] T. M. O’SHEA, (2008) “Diagnosis, treatment, and prevention of cerebral palsy" Clinical obstetrics and gynecology 51(4): 816–828. DOI: 10.1097/grf.0b013e3181870ba7.
  9. [9] K. Himmelmann and P. Uvebrant, (2014) “The panorama of cerebral palsy in Sweden. XI. Changing patterns in the birth-year period 2003–2006" Acta paediatrica 103(6): 618–624. DOI: 10.1111/apa.12614.
  10. [10] L. Collison. Spastic Diplegia–Bilateral Cerebral Palsy: Understanding the Motor Problems, Their Impact on Walking, and Management Throughout Life: a Practical Guide for Families. Gillette Children’s Healthcare Press, 2020.
  11. [11] S. Armand, G. Decoulon, and A. Bonnefoy-Mazure, (2016) “Gait analysis in children with cerebral palsy" EFORT open reviews 1(12): 448–460. DOI: 10.1302/2058-5241.1.000052.
  12. [12] I. Analauw and J. Gessal, (2018) “Gangguan Gait pada Cerebral Palsy" Jurnal Medik Dan Rehabilitasi 1(2):
  13. [13] S. Goldsmith, S. McIntyre, E. Blair, H. SmithersSheedy, N. Badawi, and M. Hansen. “Cerebral Palsy: Epidemiology”. In: Neurodevelopmental Pediatrics: Genetic and Environmental Influences. Springer, 2023, 479–495. DOI: 10.1007/978-3-031-20792-1_31.
  14. [14] S. Blundell, R. Shepherd, C. Dean, R. Adams, and B. Cahill, (2003) “Functional strength training in cerebral palsy: a pilot study of a group circuit training class for children aged 4–8 years" Clinical rehabilitation 17(1): 48–57. DOI: 10.1191/0269215503cr584oa.
  15. [15] C. Gómez-Pérez, J. M. Font-Llagunes, J. C. Martori, and J. Vidal Samsó, (2019) “Gait parameters in children with bilateral spastic cerebral palsy: a systematic review of randomized controlled trials" Developmental Medicine & Child Neurology 61(7): 770–782. DOI: 10.1111/dmcn.14108.
  16. [16] E. S. Park, C. I. Park, and J. Y. Kim, (2001) “Comparison of anterior and posterior walkers with respect to gait parameters and energy expenditure of children with spastic diplegic cerebral palsy": DOI: 10.3349/ymj.2001.42.2.180.
  17. [17] M. Poole, D. Simkiss, A. Rose, and F.-X. Li, (2018) “Anterior or posterior walkers for children with cerebral palsy? A systematic review" Disability and Rehabilitation: Assistive Technology 13(4): 422–433. DOI: 10.1080/17483107.2017.1385101.
  18. [18] R. Tao, L. Feng, Z. Xiao, and B.-h. Zhang, (2020) “Posterior versus anterior walkers for children with cerebral palsy-biomechanical analysis and energy consumption: a systematic review" Journal of Developmental and Physical Disabilities 32: 877–892. DOI: 10.1007/s10882-020-09731-3.
  19. [19] H. Koshisaki and S. Nagai, (2021) “Effect of the use of a body weight-supported walker on gait parameters in hemiplegic stroke patients" Journal of Physical Therapy Science 33(5): 434–438. DOI: 10.1589/jpts.33.434.
  20. [20] N. Berker and S. Yalçın. The help guide to cerebral palsy. Global Help, 2010.
  21. [21] J. Massion, A. Alexandrov, and A. Frolov, (2004) “Why and how are posture and movement coordinated?" Progress in brain research 143: 13–27. DOI: 10.1016/s0079-6123(03)43002-1.
  22. [22] A. Sidiropoulos, R. Magill, and A. Gordon, (2021) “Coordination of the upper and lower extremities during walking in children with cerebral palsy" Gait & Posture 86: 251–255. DOI: 10.1016/j.gaitpost.2021.03.02.
  23. [23] M. K. Günel, (2011) “Physiotherapy for children with cerebral palsy" Edited by Željka Petelin Gadže: 213. DOI: 10.5772/20321.
  24. [24] F. Miller. Gait. Springer, 2005.
  25. [25] M. Mukaino, K. Ohtsuka, H. Tanikawa, F. Matsuda, J. Yamada, N. Itoh, and E. Saitoh, (2018) “Clinicaloriented three-dimensional gait analysis method for evaluating gait disorder" JoVE (Journal of Visualized Experiments) (133): e57063. DOI: 10.3791/57063.
  26. [26] A. V. R. Nicolau, H. De Rosario, F. B. Della-Vedova, E. P. Bernabé, M.-C. Juan, and J. López-Pascual, (2022) “Accuracy of a 3D temporal scanning system for gait analysis: comparative with a marker-based photogrammetry system" Gait & Posture 97: 28–34. DOI: 10.1016/j.gaitpost.2022.07.001.
  27. [27] T. Zult, J. Allsop, J. Tabernero, and S. Pardhan, (2019) “A low-cost 2-D video system can accurately and reliably assess adaptive gait kinematics in healthy and low vision subjects" Scientific reports 9(1): 18385. DOI: 10.1038/s41598-019-54913-5.
  28. [28] D. Thewlis, C. Bishop, N. Daniell, and G. Paul, (2013) “Next-generation low-cost motion capture systems can provide comparable spatial accuracy to high-end systems" Journal of applied biomechanics 29(1): 112–117. DOI: 10.1123/jab.29.1.112.
  29. [29] A. Michelini, A. Eshraghi, and J. Andrysek, (2020) “Two-dimensional video gait analysis: A systematic review of reliability, validity, and best practice considerations" Prosthetics and Orthotics International 44(4): 245– 262. DOI: 10.1177/0309364620921290.
  30. [30] B. Hanley and A. Bissas, (2013) “Analysis of lower limb internal kinetics and electromyography in elite race walking" Journal of sports sciences 31(11): 1222–1232. DOI: 10.1080/02640414.2013.777763.
  31. [31] B. Dingenen, B. Malfait, J. Vanrenterghem, S. M. Verschueren, and F. F. Staes, (2014) “The reliability and validity of the measurement of lateral trunk motion in twodimensional video analysis during unipodal functional screening tests in elite female athletes" Physical Therapy in Sport 15(2): 117–123. DOI: 10.1016/j.ptsp.2013.05.001.
  32. [32] B. Hanley, C. B. Tucker, and A. Bissas, (2018) “Differences between motion capture and video analysis systems in calculating knee angles in elite-standard race walking" Journal of sports sciences 36(11): 1250–1255. DOI: 10.1080/02640414.2017.1372928.
  33. [33] N. Shishov, K. Elabd, V. Komisar, H. Chong, and S. N. Robinovitch, (2021) “Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique" PLoS one 16(10): e0258923. DOI: 10.1371/journal.pone.0258923.
  34. [34] K. Kirilova and P. Gatev, (2018) “A Complex Semiautomatic Method for Kinetic and Two-dimensional Kinematic Motion Analysis for Posture and Movement Investigation." International Journal Bioautomation 22(1): DOI: 10.7546/ijba.2018.22.1.57-64.
  35. [35] F. Roggio, S. Ravalli, G. Maugeri, A. Bianco, A. Palma, M. Di Rosa, and G. Musumeci, (2021) “Technological advancements in the analysis of human motion and posture management through digital devices" World journal of orthopedics 12(7): 467. DOI: 10.5312/wjo.v12.i7.467.
  36. [36] K. K. Dalal, A. M. Joshua, A. Nayak, P. Mithra, Z. Misri, and B. Unnikrishnan, (2018) “Effectiveness of prowling with proprioceptive training on knee hyperextension among stroke subjects using videographic observation-a randomised controlled trial" Gait & posture 61: 232–237. DOI: 10.1016/j.gaitpost.2018.01.01.
  37. [37] W. Choi, J. Wakeling, and S. Robinovitch, (2015) “Kinematic analysis of video-captured falls experienced by older adults in long-term care" Journal of biomechanics 48(6): 911–920. DOI: 10.1016/j.jbiomech.2015.02.025.
  38. [38] P. Fernández-González, A. Koutsou, A. CuestaGómez, M. Carratalá-Tejada, J. C. Miangolarra-Page, and F. Molina-Rueda, (2020) “Reliability of kinovea® software and agreement with a three-dimensional motion system for gait analysis in healthy subjects" Sensors 20(11): 3154. DOI: 10.3390/s20113154.
  39. [39] A. Sharifnezhad, G. R. Raissi, B. Forogh, H. Soleymanzadeh, S. Mohammadpour, M. Daliran, and M. Bagherzadeh Cham, (2021) “The validity and reliability of kinovea software in measuring thoracic kyphosis and lumbar lordosis" Iranian Rehabilitation Journal 19(2): 129–136. DOI: 10.32598/irj.19.2.670.1.
  40. [40] A. Puig-Diví, C. Escalona-Marfil, J. M. Padullés-Riu, A. Busquets, X. Padullés-Chando, and D. MarcosRuiz, (2019) “Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives" PloS one 14(6): e0216448. DOI: 10.1371/journal.pone.0216448.
  41. [41] J. Santrock. Ebook: Child Development: An Introduction. McGraw Hill, 2014.
  42. [42] M. Sarajchi, M. K. Al-Hares, and K. Sirlantzis, (2021) “Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation" IEEE Transactions on Neural Systems and Rehabilitation Engineering 29: 2695–2720. DOI: 10.1109/TNSRE.2021.3136088.
  43. [43] M. M. Švehlík, “Gait Analysis in Cerebral Palsy":
  44. [44] C. L. Vaughan, B. L. Davis, and J. C. O’connor, (1992) “Dynamics of human gait":
  45. [45] J. Rodda and H. Graham, (2001) “Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm" European journal of neurology 8: 98–108. DOI: 10.1046/j.1468-1331.2001.00042.x.
  46. [46] R. Buraschi, J. Pollet, J. H. Villafañe, B. Piovanelli, and S. Negrini, (2022) “Temporal and kinematic analyses of timed up and go test in chronic low back pain patients" Gait & Posture 96: 137–142. DOI: 10.1016/j.gaitpost.2022.05.027.
  47. [47] G. Yavuzer, (2009) “Three-dimensional quantitative gait analysis" Acta Orthop Traumatol Turc 43(2): 94–101. DOI: 10.3944/AOTT.2009.94.
  48. [48] S. J. Hoffman. Introduction to kinesiology: studying physical activity. Human Kinetics, 2009.
  49. [49] R. B. Dale, (2012) “Principles of rehabilitation" Physical rehabilitation of the injured athlete. Philadelphia: Saunders: 41–66.
  50. [50] M. K. Lebiedowska, T. M. Wente, and M. Dufour, (2009) “The influence of foot position on body dynamics" Journal of biomechanics 42(6): 762–766. DOI: 10.1016/j.jbiomech.2008.12.021.
  51. [51] S. J. Singleton, S. E. Keating, S. L. McDowell, B. A. Coolen, and J. C. Wall, (1992) “Predicting step time from step length and velocity" Australian Journal of Physiotherapy 38(1): 43–46. DOI: 10.1016/S0004-9514(14)60550-X.
  52. [52] H. H. Hunter, U. C. Ugbolue, G. G. Sorbie, W.-K. Lam, F. M. Grace, A. Dello Iacono, M. Liang, F. Dutheil, Y. Gu, and J. S. Baker, (2022) “An evaluation of temporal and club angle parameters during golf swings using low cost video analyses packages" Scientific Reports 12(1): 14012. DOI: 10.1038/s41598-022-17175-2.
  53. [53] I. Peate and S. Evans. Fundamentals of anatomy and physiology: For nursing and healthcare students. John Wiley & Sons, 2020.
  54. [54] V. Panoutsakopoulos and I. A. Kollias, (2023) “ImageBased Recording and Analysis Methods for the Assistance of Track and Field Coaches to Improve Athletics Training" The Use of Developing Technology in Sports (IKEEBOOKCH-2023-305): 29–49.
  55. [55] R. T. Yunardi, A. A. Firdaus, and E. I. Agustin, (2017) “Robotic leg design to analysis the human leg swing from motion capture" Bulletin of Electrical Engineering and Informatics 6(3): 256–264. DOI: 10.11591/eei.v6i3.645.
  56. [56] M. Andriluka, S. Roth, and B. Schiele. “Pictorial structures revisited: People detection and articulated pose estimation”. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE. 2009, 1014–1021. DOI: 10.1109/cvpr.2009.5206754.
  57. [57] A. McCormick, H. Alazem, A. Morbi, R. Beranek, R. Adler, G. Tibi, and E. Vilé. “Power walker helps a child with cerebral palsy”. In: International Conference on Control, Dynamic Systems, and Robotics. 2016. DOI: 10.11159/cdsr16.129.
  58. [58] O. Beauchet, C. Annweiler, Y. Lecordroch, G. Allali, V. Dubost, F. R. Herrmann, and R. W. Kressig, (2009) “Walking speed-related changes in stride time variability: effects of decreased speed" Journal of neuroengineering and rehabilitation 6: 1–6. DOI: 10.1186/1743-0003-6-32.
  59. [59] M. E. Littrell, Y.-H. Chang, and B. P. Selgrade, (2018) “Development and assessment of a low-cost clinical gait analysis system" Journal of applied biomechanics 34(6): 503–508. DOI: 10.1123/jab.2017-0370.
  60. [60] T. D. Collins, S. N. Ghoussayni, D. J. Ewins, and J. A. Kent, (2009) “A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set" Gait & posture 30(2): 173–180. DOI: 10.1016/j.gaitpost.2009.04.004.
  61. [61] J. W. Osborne. Best practices in data cleaning: A complete guide to everything you need to do before and after collecting your data. Sage publications, 2012.
  62. [62] O. Blin, A.-M. Ferrandez, and G. Serratrice, (1990) “Quantitative analysis of gait in Parkinson patients: increased variability of stride length" Journal of the neurological sciences 98(1): 91–97. DOI: 10.16/0022-510x(90)90184-o.
  63. [63] O. Blin, A. Ferrandez, J. Pailhous, and G. Serratrice, (1991) “Dopa-sensitive and dopa-resistant gait parameters in Parkinson’s disease" Journal of the neurological sciences 103(1): 51–54. DOI: 10.1016/0022-510x(91) 90283-d.
  64. [64] Z. Z. Tian, M. D. Kyte, and C. J. Messer, (2002) “Parallax error in video-image systems" Journal of Transportation Engineering 128(3): 218–223. DOI: 10.1061/ (asce)0733-947x(2002)128:3(218).
  65. [65] S. J. Obst, R. Bickell, K. Florance, R. N. Boyd, F. Read, and L. Barber, (2022) “The size and echogenicity of the tibialis anterior muscle is preserved in both limbs in young children with unilateral spastic cerebral palsy" Disability and Rehabilitation 44(14): 3430–3439. DOI: 10.1080/09638288.2020.1863482.
  66. [66] P. M. McGinnis. Biomechanics of sport and exercise. Human Kinetics, 2013.
  67. [67] T. Hanning, A. Lasaruk, and T. Tatschke, (2011) “Calibration and low-level data fusion algorithms for a parallel 2D/3D-camera" Information Fusion 12(1): 37–47. DOI: 10.1016/j.inffus.2010.01.006.
  68. [68] P. Y. K. Laksana, R. H. Setyanto, L. Herdiman, et al., (2021) “Redesign walker for children with diplegic cerebral palsy using TRIZ method" Jurnal Sistem Dan Manajemen Industri 5(1): 8–14. DOI: 10.30656/jsmi.v5i1.2855.
  69. [69] G. Paleg and R. Livingstone, (2016) “Evidenceinformed clinical perspectives on selecting gait trainer features for children with cerebral palsy" International Journal of Therapy and Rehabilitation 23(9): 444–454. DOI: 10.12968/ijtr.2016.23.9.444.
  70. [70] A. Bonde, N. K. Mandavgade, S. Wankhede, K. Ghate, S. Nandi, P. Muchulwar, and P. Burde, (2021) “Design and analysis of walker with sit to stand assistance" Materials Today: Proceedings 47: 6074–6077. DOI: 10.1016/j.matpr.2021.05.009.
  71. [71] N. Abdullah, Z. Ibrahim, S. Ramesh, M. A. Muhammad, S. R. Ya’Akub, and M. Z. B. S. A. Hamid. “Design and simulation of low-cost lower limb exoskeleton for rehabilitation exercise”. In: AIP Conference Proceedings. 2643. 1. AIP Publishing. 2023. DOI: 10.1063/5.0110426.
  72. [72] A. Kulkarni, V. Melavanki, V. Pavate, and Z. R. Abbunavar, (2020) “FINITE ELEMENT ANALYSIS OF ‘A COLLAPSIBLE WALKER’":
  73. [73] S. M. Bruijn, M. Millard, L. Van Gestel, P. Meyns, I. Jonkers, and K. Desloovere, (2013) “Gait stability in children with Cerebral Palsy" Research in developmental disabilities 34(5): 1689–1699. DOI: 10.1016/j.ridd.2013.02.011.
  74. [74] M. Visintin and H. Barbeau, (1989) “The effects of body weight support on the locomotor pattern of spastic paretic patients" Canadian Journal of Neurological Sciences 16(3): 315–325. DOI: 10.1017/S0317167100029152.L.
  75. [75] M. Noorkoiv, G. Lavelle, N. Theis, T. Korff, C. Kilbride, V. Baltzopoulos, A. Shortland, W. Levin, and J. M. Ryan, (2019) “Predictors of walking efficiency in children with cerebral palsy: lower-body joint angles, moments, and power" Physical Therapy 99(6): 711–720. DOI: 10.1093/ptj/pzz041.
  76. [76] P. C. Minh, T. N. Xuan, T. D. Van, D. N. Minh, et al., (2021) “A game-based solution with interactive toys for supporting upper limb rehabilitation for preschoolaged children with Cerebral Palsy: A preliminary result" Journal of Applied Science and Engineering 24(6): 867–874. DOI: 10.6180/jase.202112_24(6).0007.