- [1] Q. Wang, D. Zhang, Y. Dou, Q. Wang, and Y. Wang, (2025) “Advanced Multi-Parameter Prediction of Coal Quality Using LIBS and Ensemble Machine Learning Techniques" ACS Omega 10(33): 37574–37582.
- [2] L. Zou, J. Qiao, X. Yu, X. Chen, and M. Lei, (2023) “Intelligent proximate analysis of coal based on near-infrared spectroscopy and multioutput deep learning" IEEE Trans. Artif. Intell. 5(3): 1398–1410.
- [3] J. Li, R. Gao, Y. Zhang, L. Zhang, L. Dong, W. Ma, W. Yin, and S. Jia, (2025) “Research on accurate analysis of coal quality using NIRS-XRF fusion spectroscopy in complex coal type scenarios" Opt. Laser Technol. 181: 111734.
- [4] J. Tian, M. Li, X. Zhang, M. Lei, L. Ke, and L. Zou, (2024) “Enhancing Moisture Detection in Coal Gravels: ADeep Learning-Based Adaptive Microwave Spectra Fusion Method" Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 313: 124147.
- [5] L. Zou, S. Kou, Z. Xu, Z. Tan, and M. Lei, (2025) “Simultaneous prediction of bauxite quality parameters using TC-U net and near-infrared spectroscopy" Memetic Computing 17(2): 25.
- [6] B. Hu and J. Wang, (2022) “A weighted multi-source domain adaptation approach for surface defect detection" IET Image Process. 16(8): 2210–2218.
- [7] A. J. Parrott, A. C. McIntyre, M. Holden, G. Colquhoun, Z.-P. Chen, D. Littlejohn, and A. Nor don, (2022) “Calibration model transfer in mid-infrared process analysis with in situ attenuated total reflectance immersion probes" Anal. Methods 14(19): 1889–1896.
- [8] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, (2012) “A kernel two-sample test" J. Mach. Learn. Res. 13(1): 723–773.
- [9] B.SunandK.Saenko. “Deep coral: Correlation alignment for deep domain adaptation”. In: Eur. Conf. Comput. Vis. 2016, 443–450.
- [10] M. Hassan Pour Zonoozi, V. Seydi, and M. Deypir, (2025) “An unsupervised adversarial domain adaptation based on variational auto-encoder" Mach. Learn. 114(5): 1–26.
- [11] S. Zhao, G. Wang, S. Zhang, Y. Gu, Y. Li, Z. Song, P. Xu, R. Hu, H. Chai, and K. Keutzer. “Multi-source distilling domain adaptation”. In: Proc. AAAI Conf. Artif. Intell. 34. 07. 2020, 12975–12983.
- [12] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang. “Moment matching for multi-source domain adaptation”. In: Proc. IEEE/CVF Int. Conf. Comput. Vis. 2019, 1406–1415.
- [13] H. Zhao, S. Zhang, G. Wu, J. M. F. Moura, J. P. Costeira, and G. J. Gordon. “Adversarial multiple source domain adaptation”. In: Adv. Neural Inf. Pro cess. Syst. 31. 2018.
- [14] L.Yang,Y.Balaji,S.-N.Lim,andA.Shrivastava.“Curriculum manager for source selection in multi-source domain adaptation”. In: Eur. Conf. Comput. Vis. 2020, 608–624.
- [15] L. Zhao, X. Wang, Z. Liu, Z. Wang, and Z. Chen, (2024) “Learnable Graph Guided Deep Multi-view Representation Learning via Information Bottleneck" IEEE Trans. Circuits Syst. Video Technol. 35(4): 3303 3314.
- [16] L. Zhao, Q. Xie, Z. Li, S. Wu, and Y. Yang, (2024) “DynamicGraphGuidedProgressivePartial View-Aligned Clustering" IEEE Trans. Neural Netw. Learn. Syst. 36(5): 9370–9382.
- [17] S. Ma,L. Zhao, M. Lu, Y. Guo, and B. Xu. Consistency Aware Padding for Incomplete Multi-Modal Alignment Clustering Based on Self-Repellent Greedy Anchor Search. [Preprint]. 2025.
- [18] L. Zhao, P. Huang, T. Chen, C. Fu, Q. Hu, and Y. Zhang, (2023) “Multi-sentence complementarily generation for text-to-image synthesis" IEEE Trans. Multimed. 26: 8323–8332.
- [19] C. Cortes and M. Mohri. “Domain adaptation in regression”. In: Int. Conf. Algorithmic Learn. Theory. 2011, 308–323.
- [20] I. Nejjar, Q. Wang, and O. Fink. “Dare-gram: Unsupervised domain adaptation regression by aligning inverse grammatrices”.In:Proc. IEEE/CVFConf.Com put. Vis. Pattern Recognit. 2023, 11744–11754.
- [21] H.-R. Yang, C.-X. Ren, and Y.-W. Luo. “Cod: Learning conditional invariant representation for domain adaptation regression”. In: Eur. Conf. Comput. Vis. 2024, 108–125.
- [22] Y. Wu, G. Parmigiani, and B. Ren. Multi-source domain adaptation for regression. [Preprint]. 2023.
- [23] Y. Zhang, G. Yan, G. Zhao, S. Ma, Z. Liu, and G. Zhao, (2024) “A Dynamic Domain Adaptation Regression Method for Multiple Working Conditions Based on Continual Learning" Ind. Eng. Chem. Res. 63(40): 17252–17265.
- [24] Y. Mansour, M. Mohri, and A. Rostamizadeh. “Domain adaptation with multiple sources”. In: Adv. Neu ral Inf. Process. Syst. 21. 2008.
- [25] R. Xu, Z. Chen, W. Zuo, J. Yan, and L. Lin. “Deep cocktail network: Multi-source unsupervised domain adaptation with category shift”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2018, 3964–3973.
- [26] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. “Maximum classifier discrepancy for unsupervised domain adaptation”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2018, 3723–3732.
- [27] Y. Zuo, H. Yao, and C. Xu, (2021) “Attention-based multi-source domain adaptation" IEEE Trans. Image Process. 30: 3793–3803.
- [28] Y. Ganin and V. Lempitsky. “Unsupervised domain adaptation by backpropagation”. In: Int. Conf. Mach. Learn. 2015, 1180–1189.
- [29] M. Long, Z. Cao, J. Wang, and M. I. Jordan. “Conditional adversarial domain adaptation”. In: Adv. Neural Inf. Process. Syst. 31. 2018.
- [30] Z. Pei, Z. Cao, M. Long, and J. Wang. “Multi adversarial domain adaptation”. In: Proc. AAAI Conf. Artif. Intell. 32. 1. 2018.
- [31] R. Xu, G. Li, J. Yang, and L. Lin. “Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation”. In: Proc. IEEE/CVF Int. Conf. Comput. Vis. 2019, 1426–1435.
- [32] Y.Zhang,T.Liu,M.Long,andM.I.Jordan.“Bridging theory and algorithm for domain adaptation”. In: Int. Conf. Mach. Learn. 2019, 7404–7413.
- [33] J. Liang, D. Hu, and J. Feng. “Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation”. In: Int. Conf. Mach. Learn. 2020, 6028–6039.
- [34] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. “Ad versarial discriminative domain adaptation”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 7167 7176.
- [35] R. Shu, H. H. Bui, H. Narui, and S. Ermon. A dirt-t approach to unsupervised domain adaptation. [Preprint]. 2018.