REFERENCES
- [1] Li, G. J. and Wah, B. W., “The Design of Optimal Systolic Algorithms,” IEEE Trans. Comput, C-34, pp. 6677 (1985).
- [2] Ibarra, O. H. and Palis, M., “VLSI Algorithms for Solving Recurrence Equations and Applications,” IEEE Trans. on Acoust. Speech, and Signal Processing, ASSP-35, pp. 10461064 (1987).
- [3] Moldovan, D. I., “On the Design of Algorithms for VLSI Systolic Arrays,” Proc. IEEE, Vol. 71, pp. 113120 (1983).
- [4] Louka, B. and Tchuente, M., “An Optimal Solution for Gauss-Jordon Elimination on 2D Systolic Arrays,” In John, V. McCanny, John McWhirter and Earl, E. Swartzlander Jr., editors, Systolic Array Processors, Prentice-Hall, Killarney, Ireland, pp. 264274 (1989).
- [5] Hirschberg, D. S. “Recent Results on the Complexity of Common-subsequence Problems,” In David Sankoff and Joseph, B. Kruskal, editors, Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA, U.S.A. (1983).
- [6] Karrp, R. M.; Miller, R. E. and Winograd, S., “Properties of a Model for Parallel Computations: Determinacy, Termination, Queueing,” SIAM J. Appl. Math, Vol. 14, pp. 13901411 (1966).
- [7] Kung, H.-T. and Leiserson, C. E., “Algorithms for VLSI Processor Arrays,” In Introduction to VLSI Systems, Addison-Wesley, Menlo Park, CA, U.S.A. pp. 271292 (1980).
- [8] Lamport, L., “The Parallel Execution of Do-Loops,” Comm. of the ACM, Vol. 17, pp. 8393 (1974).
- [9] Wilde, D. K., “A Library for Doing Polyhedral Operations,” Master’s thesis, Corvallis, Oregon, 1993. Also published as IRISA technical report PI 785, Rennes, France (1993).
- [10] Krishnamurthy, E. V.; Kunde, M.; Schimmler, M. and Schroder, H., “Systolic Algorithm for Tensor Products of Matrices: Implementation and Applications,” Parallel Computing, Vol. 13, pp. 301308 (1990).
- [11] Stanley, R. P., “Linear Homogeneous Diophantine Equations and Magic Labelings of Graphs,” Duke Math. J., Vol. 40, pp. 607632 (1973).
- [12] Benaini, A. and Robert, Y., “Space-time-minimal Systolic Arrays for Gaussian Elimination and the Algebraic Path Problem,” Parallel Computing, Vol. 15, pp. 211225 (1990).
- [13] Clauss, P.; Mongenet, C. and Perrin, G. R., “Calculus of Space-optimal Mappings of Systolic Algorithms on Processor Arrays,” In Proc. Int. Conf. on Application Specific Array Processors, IEEE Computer Society, Princeton, NJ, U.S.A. pp. 418 (1990).
- [14] Aho, A. V.; Hopcroft, J. E. and Ullman J. D., “The Design and Analysis of Computer Algorithms,” Addisonwesley, Reading, MA, U.S.A. (1974).
- [15] Wong, Y. and Delosme, J.-M., “Optimization of Processor Count for Systolic Arrays,” Dept. of Computer Sci. RR-697, Yale Univ., U.S.A. (1989).
- [16] Wong, Y. and Delosme, J.-M., “Space-optimal Linear Processor Allocation for Systolic Array Synthesis,” In Prasanna, V. K. and Canter, L. H., editiors, Proc. 6th Int. Parallel Processing Symposium, IEEE Computer Society Press, Baverly Hills, CA, U.S.A. pp. 275282 (1992).
- [17] Shang, W. and Fortes, J. A. B., “Time Optimal Linear Schedule for Algorithms with Uniform Dependencies,” IEEE Transactions on Computers, Vol. 40, pp. 723742 (1991).
- [18] Darte, A.; Khachiyan, L. and Robert, Y., “Linear scheduling is Close to Optimal,” In José Fortes, Edward Lee, and Teresa Meng, editors, Application Specific Array Processors, IEEE Computer Society Press, August pp. 3746 (1992).
- [19] Krishnamurthy, E. V. and Schroder, H., “Systolic Algorithm for Multivariable Approximation Using Tensor Products of Basis Functions,” Parallel Computing, Vol. 17, pp. 483492 (1991).
- [20] MacMahon, P. A., “The Diophantine Inequality x 'y,” In George E. Andrews, editor, Collected Papers, Vol. I, Combinatorics, The MIT Press, Cambridge, MA, U.S.A. pp. 12121232(1979).
- [21] Garey, M. R. and Johnson, D. S., “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman, San Francisco, CA, U.S.A. (1979).
- [22] Quinton, P., “Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations,” In Proc. 11th Ann. Symp. on Computer Architecture, pp. 208214 (1984).
- [23] Rajopadhye, S. V.; Purushothaman, S. and Fujimoto, R. M., “On Synthesizing Systolic Arrays from Recurrence Equations with Linear Dependencies,” In K. V. Nori, editor, Lecture Notes in Computer Science, No. 241: Foundations of Software Technology and Theoretical Computer Science, Springer Verlag, New Delhi, India pp. 488503 (1986).
- [24] Sahni, S., “Computational Related Problems,” SIAM J. Comput., Vol. 3, pp. 262279 (1974).
- [25] Clauss, P. and Loechner, V., “Parametric Analysis of Polyhedral Iteration Spaces,” Journal of VLSI Signal Processing, Vol. 19, pp. 179194 (1998).
- [26] Granata, J.; Conner, M. and Tolimieri, R., “Recursive Fast Algorithm and the Role of the Tensor Product,” IEEE Transactions on Signal Processing, Vol. 40, pp. 29212930 (1992).
- [27] MacMahon, P. A., “Note on the Diophantine Inequality x 'y,” In George E. Andrews, editor, Collected Papers, Vol. I, Cambinatorics, MIT Press, Cambridge, MA, U.S.A. pp. 12331246 (1979).