Zuoping Zhao1This email address is being protected from spambots. You need JavaScript enabled to view it., Dongyang Li2, and Zhengjian Lai3
1College of Engineering, Yanbian University, Yanji, 133002, China
2Technology Center, Nanyang Beifangxiangdong Industrial Co., Ltd., Nanyang, 474677, China
3College of Automotive Technology, Sichuan Vocational and Technical College, Suining, 629099, China
Received: April 17, 2025 Accepted: June 25, 2025 Publication Date: August 16, 2025
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
The chattering phenomenon is a problem in sliding mode technique under discrete-time implementation. In this paper, a novel discrete-time algorithm for the hybrid non-homogeneous sliding mode differentiator is presented to prevent chattering in output signals. To be specific, an equivalence framework is employed linking the traditional set-valued signum function with the multilayer set-valued mapping to reduce discretization complexity. The stability of the system is analyzed using a combined Lyapunov approach and input-to-state stability theory. In addition, the discretization procedure is based on the equivalence relation between the set-valued function and the saturation function, as well as the implicit-Euler method. Numerical simulations demonstrate that the proposed algorithm completely suppresses chattering (0 amplitude), outperforming both the sigmoid function method (2.5×10−7 amplitude) and the boundary layer method (2.0×10−7 amplitude), while achieving improved filtering performance and enhanced disturbance rejection, thereby yielding more reliable output signals.
Keywords: chattering phenomenon; sliding mode; signum fuction; implicit-Euler
[1] D. Meng, Z. Ma, and W. Liu, (2024) “A Robust Observer-Based Control Structure For Permanent Magnet Synchronous Motor Drives Based On MPC And Sliding Mode Observation" Journal of Applied Science and Engineering 28(6): 1253–1264. DOI: 10.6180/jase. 202506\_28(6).0008.
[2] K. Chenchireddy and V. Jegathesan, (2023) “Improved Voltage Balancing Scheme For The MLI Based DSTAT COM With Sliding Mode Controller" Journal of Ap plied ScienceandEngineering27(8):2937–2946. DOI: 10.6180/jase.202408\_27(8).0002.
[3] J. Feng, W. Wang, and H. Zeng, (2024) “Integral Sliding Mode Control for a Class of Nonlinear Multiagent Systems with Multiple Time-Varying Delays" IEEE Ac cess 12: 10512–10520. DOI: 10.1109/ACCESS.2024. 3354030.
[4] S. Liu, Z. Lin, W. Huang, and B. Yan, (2024) “A New Adaptive Sliding Mode Reaching Law: Theoretical Design and Simulation Analysis" Advanced Theory and Simulations 7(10): 2300736. DOI: 10.1002/adts.202300736.
[5] S. M. Rakhtala, R. Ghaderi, and N. A. Ranjbar, (2011) “Prolong the Stack Life of PEM Fuel Cell System via Higher Order Sliding Mode Control" Proceedings of the 2nd International Conference on Control, Instrumentation and Automation:13–18. DOI: 10.1109/ICCIAutom.2011.6356623.
[6] X. Yu, Y. Feng, and Z. Man, (2020) “Terminal Sliding Mode Control–An Overview" IEEE Open Journal of the Industrial Electronics Society 2: 36–52. DOI: 10. 1109/OJIES.2020.3040412.
[7] S. M. Rakhtala and M. Ahmadi, (2017) “Twisting Control Algorithm for the Yaw and Pitch Tracking of a Twin Rotor UAV" International Journal of Automation and Control 11(2): 143–163. DOI: 10.1504/IJAAC.2017.083296.
[8] N. Mirrashid, S. M. Rakhtala, and M. Ghanbari, (2018) “Robust Control Design for Air Breathing Pro ton Exchange Membrane Fuel Cell System via Variable Gain Second-Order Sliding Mode" Energy Science & Engineering 6(3): 126–143. DOI: 10.1002/ese3.199.
[9] S. Jin, R. Kikuuwe, and M. Yamamoto, (2012) “Real Time Quadratic Sliding Mode Filter for Removing Noise" Advanced Robotics 26(8-9): 877–896. DOI: 10.1163/156855312X633011.
[10] J. Han and W. Wang, (1994) “Nonlinear Tracking Differentiator" Journal of Systems Science and Mathematical Sciences 14(2): 177–183.
[11] A. Levant, (1998) “Robust Exact Differentiation via Sliding Mode Technique" Automatica 34(3): 379–384. DOI: 10.1016/S0005-1098(97)00209-4.
[12] A. Chalanga et al., (2016) “Implementation of Super Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches" IEEE Trans actions on Industrial Electronics 63(6): 3677–3685. DOI: 10.1109/TIE.2016.2523913.
[13] L. Derafa, A. Benallegue, and L. Fridman, (2012) “Su per Twisting Control Algorithm for the Attitude Tracking of a Four Rotors UAV" Journal of the Franklin Institute 349(2): 685–699. DOI: 10.1016/j.jfranklin.2011.10. 011.
[14] S. M. Rakhtala and A. Casavola, (2021) “Real-Time Voltage Control Based on a Cascaded Super Twisting Algorithm Structure for DC–DC Converters" IEEE Trans actions on Industrial Electronics 69(1): 633–641. DOI: 10.1109/TIE.2021.3051551.
[15] S. M. Rakhtala, (2021) “Adaptive Gain Super Twisting Algorithm to Control a Knee Exoskeleton Disturbed by Unknown Bounds" International Journal of Dynamics and Control 9: 711–726. DOI: 10.1007/s40435-020-00686-z.
[16] D. V. Efimov and L. Fridman, (2011) “A Hybrid Ro bust Non-Homogeneous Finite-Time Differentiator" IEEE Transactions on Automatic Control 56(5): 1213–1219. DOI: 10.1109/TAC.2011.2108590.
[17] S. Jin et al., (2022) “Unified Framework for Implicit Euler Implementation of Second-Order Sliding Mode Con trollers" Communications in Nonlinear Science and Numerical Simulation 111: 106430. DOI: 10.1016/j.cnsns.2022.106430.
[18] Z. Lv et al., (2019) “A New Quick-Response Sliding Mode Tracking Differentiator with Its Chattering-Free Discrete-Time Implementation" IEEE Access 7: 130236 130245. DOI: 10.1109/ACCESS.2019.2940262.
[19] N. Ren, L. Fan, and Z. Zhang, (2021) “Sensorless PMSM Control with Sliding Mode Observer Based on Sigmoid Function" Journal of Electrical Engineering &Technology 16(2): 933–939. DOI: 10.1007/s42835 021-00661-4.
[20] P. Suryawanshi, P. Shendge, and S. Phadke, (2016) “A Boundary Layer Sliding Mode Control Design for Chatter Reduction Using Uncertainty and Disturbance Estima tor" International Journal of Dynamics and Control 4: 456–465. DOI: 10.1007/s40435-015-0150-9.
[21] L. Wu et al., (2021) “Sliding Mode Control in Power Converters and Drives: A Review" IEEE/CAA Journal of Automatica Sinica 9(3): 392–406. DOI: 10.1109/ JAS.2021.1004380.
[22] A. Levant and X. Yu, (2018) “Sliding-Mode-Based Differentiation and Filtering" IEEE Transactions on Automatic Control 63(9): 3061–3067. DOI: 10.1109/TAC.2018.2797218.
[23] M. Mojallizadehetal.,(2023)“ASurveyontheDiscrete Time Differentiators in Closed-Loop Control Systems: Experiments on an Electro-Pneumatic System" Control Engineering Practice 136: 105546. DOI: 10.1016/j. conengprac.2023.105546.
[24] M. Mojallizadeh, B. Brogliato, and V. Acary, (2021) “Time-Discretizations of Differentiators: Design of Implicit Algorithms and Comparative Analysis" International Journal of Robust and Nonlinear Control 31(16): 7679–7723. DOI: 10.1002/rnc.5710.
[25] X. Xiong et al., (2019) “Implicit-Euler Implementation of Super-Twisting Observer and Twisting Controller for Second-Order Systems" IEEE Transactions on Circuits and Systems II: Express Briefs 67(11): 2607–2611. DOI: 10.1109/TCSII.2019.2957271.
[26] S. Jin, R. Kikuuwe, and M. Yamamoto, (2014) “Im proving velocity feedback for position control by using a discrete-time sliding mode filtering with adaptive windowing" Advanced robotics 28(14): 943–953. DOI: 10.1080/01691864.2014.899161.
[27] B. Brogliato, A. Polyakov, and D. Efimov, (2019) “The Implicit Discretization of the Supertwisting Sliding-Mode Control Algorithm" IEEE Transactions on Automatic Control 65(8): 3707–3713. DOI: 10.1109/TAC.2019.2953091.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.