Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Huynh Son Thao Suong1,2, Nguyen Ngoc Tuyet Nhi1,2, Le Tan Phong1,2, Nguyen Kim Minh Tam1,2, Nguyen Van Dung1,2, Tran Thuy Tuyet Mai1,2, Ngo Tran Hoang Duong1,2, and Nguyen Quang Long1,2This email address is being protected from spambots. You need JavaScript enabled to view it.

1Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam

2Vietnam National University Ho Chi Minh City, Vo Truong Toan Street, Ho Chi Minh City, Vietnam


 

 

Received: May 9, 2025
Accepted: July 19, 2025
Publication Date: August 7, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(4).0015  


An effective and easily recoverable antibacterial material was developed by directly immobilizing ion-exchanged zeolite crystals ( 2-3 µm ) onto cotton fabric via a precisely controlled hydrothermal and ion-exchange process. Structural characterization using XRD, SEM, and BET confirmed the successful formation of highly crystalline zeolite X (Si/Al ratio ≈ 1.5) with a high specific surface area of 737 m2/g, while TGA indicated an optimal zeolite loading of 2 wt% on the cotton fibers. Antibacterial functionality was introduced through ion exchange with Agand Cu2+, with the Ag+-modified composite exhibiting superior performance: complete eradication (100% reduction) of E. coli within 24 hours (colony counting assay) and a 15 mm inhibition zone (disk diffusion test), markedly outperforming both Cu2+-modified and untreated samples. This work offers valuable insight into the structure-property relationships of zeolite-textile hybrid materials and highlights their practical potential for applications in water disinfection and medical textiles.

 


Keywords: Zeolite-cotton composite, Hydrothermal synthesis, Antibacterial material, Water purification, Escherichia Coli


  1. [1] D. Xu, M. Yang, Z. Luo, Z. Lian, Y. Zhou, W. Geng, W. Kong, and J. Li, (2024) “Ultrasonic-assisted preparation of zinc oxide for bacteria inhibition: influence of dispersants and antibacterial mechanism" Applied Physics A 130: 773. DOI: 10.1007/s00339-024-07949-y.
  2. [2] N. K. Madipoju, S. J. Khanam, G. Sunkari, S. M. Vasamsetti, V. Divyasri, V. Morampudi, R. N. Savu, M. Banavoth, S. Banne, I. Hasan, and P. Kalakonda, (2025) “Bimetallic zinc-silver nanocomposites for superior antimicrobial efficacy" Applied Physics A 131(2): 153. DOI: 10.1007/s00339-025-08289-1.
  3. [3] S. Some, R. Mondal, D. Mitra, D. Jain, D. Verma, and S. Das, (2021) “Microbial pollution of water with special reference to coliform bacteria and their nexus with environment" Energy Nexus 1: 100008. DOI: 10.1016/j. nexus.2021.100008.
  4. [4] O. V. Obayomi, D. C. Olawoyin, O. Oguntimehin, L. S. Mustapha, S. O. Kolade, P. O. Oladoye, S. Oh, and K. S. Obayomi, (2024) “Exploring emerging wa ter treatment technologies for the removal of microbial pathogens" Current Research in Biotechnology 8: 100252. DOI: 10.1016/j.crbiot.2024.100252.
  5. [5] W. H. Organization. Drinking-water. Web Page. 2023.
  6. [6] U. Nations. The17Sustainable Development Goals. Web Page.
  7. [7] A. A. Vasconcelos, T. Len, A. D. de Oliveira, A. A. Costa, A. R. Souza,C.E.Costa,R.Luque,G.N.Rocha Filho, R. C. Noronha, and L. A. Nascimento, (2023) “Zeolites: A Theoretical and Practical Approach with Uses in (Bio)Chemical Processes" Applied Sciences 13(3): DOI: 10.3390/app13031897.
  8. [8] W. Yan, Y. Li, F.-S. Xiao, Z. Liu, and J. Yu, (2024) “The Future of Zeolites" Chemistry of Materials 36(15): 7103–7105. DOI: 10.1021/acs.chemmater.4c01675.
  9. [9] N. T. T. Phuong, Q. T. Le Nguyen, H. H. Lam, V. D. Nguyen, H. D. Ngo Tran, and N. Quang Long, (2022) “Enhancement Of CO2 Adsorption By Introducing Meso pores Into FAU Zeolite Using Acid-Base Leaching" Journal of Applied Science and Engineering 26(6): 791 798. DOI: 10.6180/jase.202306_26(6).0005.
  10. [10] H. G. Quynh, H. V. Thanh, N. T. T. Phuong, L. H. Hung, N.V. Dung, andN.Q.Long,(2023) “Magnetite supported on different zeolites as highly efficient heterogeneous Fenton catalysts for methylene blue removal" IOP Conference Series: Earth and Environmental Science 1226(1): 012015. DOI: 10.1088/1755-1315/1226/ 1/012015.
  11. [11] S. P. Manjunath, P. Binnal, S. Rajashekhara, and J. Patil, (2020) “In-situ synthesis of ZSM-5 to form SCR catalyst membrane and Modeling using COMSOL Multi physics" Journal of Applied Science and Engineering 23(4): 723–730. DOI: 10.6180/jase.2020_23(4).0017.
  12. [12] N. T. T. Phuong, N. M. Thuan, N. T. M. Linh, N. Van Dung, N. T. H. Duong, and N. Q. Long, (2024) “Effects of organic acids on microwave-assisted leaching for mesopore generation in FAU zeolite" Applied Physics A130(10): 734. DOI: 10.1007/s00339-024-07879-9.
  13. [13] N. M. Thuan, N. T. M. Linh, N. T. T. Phuong, N. T. H. Duong, N. M. Hung, P. T. Tuyet, N. Van Dung, and N.Q.Long,(2024)“Ethanolamine-modified zeolite– Chitosan beads as new adsorbents for carbon dioxide capture and crystal violet removal" Case Studies in Chemical and Environmental Engineering 10: 100917. DOI: 10.1016/j.cscee.2024.100917.
  14. [14] C. Onyutha, E. Okello, R. Atukwase, P. Nduhukiire, M. Ecodu, and J. N. Kwiringira, (2024) “Improving household water treatment: using zeolite to remove lead, f luoride and arsenic following optimized turbidity reduction in slow sand filtration" Sustainable Environment Research 34(1): 4. DOI: 10.1186/s42834-024-00209-x.
  15. [15] L. Quynh, L. Quang, N. Tam, and N. Quang Long, (2023) “Preparation of PVA/Chitosan/Zeolite Composite and its Antibacterial Activity for Water Treatment" Advances in Science and Technology 122: 41–47. DOI: 10.4028/p-7m1j4w.
  16. [16] C. Chen, G. Wang, and X. Xu, (2021) “Preparation of zeolite-cellulose composites for water disinfection" Jour nal of Porous Materials 28(5): 1459–1468. DOI: 10.1007/s10934-021-01096-y.
  17. [17] B .Kwakye-Awuah, C. Williams, M. A. Kenward, and I. Radecka, (2008) “Antimicrobial action and efficiency of silver-loaded zeolite X" Journal of Applied Microbiology 104(5): 1516–1524. DOI: 10.1111/j.1365-2672. 2007.03673.x.
  18. [18] J. Cui, R. Yeasmin, Y. Shao, H. Zhang, H. Zhang, and J. Zhu, (2020) “Fabrication of Ag+, Cu2+, and Zn2+ Ternary Ion-Exchanged Zeolite as an Antimicrobial Agent in Powder Coating" Industrial & Engineering Chemistry Research 59(2): 751–762. DOI: 10.1021/acs.iecr.9b05338.
  19. [19] F. Zou, S. Cao, Y. Luo, Z. Liu, X. Zhao, J. Hu, R. Liu, L. Cao, B. Liang, Z. Wang, and Z. Weng,(2023) “Antibacterial capability of microstripe structure on silver-doped Ti6Al4V by laser interference direct writing" Applied Physics A 129(11): 797. DOI: 10.1007/s00339-023 07019-9.
  20. [20] A. Tsompou, P. Falkman, A. Terry, and V. Kocher bitov, (2024) “A structural investigation on the interactions of cotton fabric cellulose with olive oil and water" Carbohydrate Polymer Technologies and Applications 8: 100590. DOI: 10.1016/j.carpta.2024.100590.
  21. [21] M. Eyvaz, E. Gürbulak, S. Arslan, and E. Yüksel.“Tex tile Materials in Liquid Filtration Practices: Current Status and Perspectives in Water and Wastewater Treatment”. In: Textiles for Advanced Applications. Ed. byB. Kumar and S. Thakur. Rijeka: Intech Open, 2017. DOI: 10.5772/intechopen.69462.
  22. [22] S. Mintova, V. Valtchev, B. Schoeman, and J. Sterte, (1996) “Preparation of zeolite Y-vegetal fiber composite materials" Journal of Porous Materials 3(3): 143–150. DOI: 10.1007/BF01134025.
  23. [23] G. S. Lee, Y. J. Lee, K. Ha, and K. B. Yoon, (2001) “Preparation of Flexible Zeolite-Tethering Vegetable Fibers" Advanced Materials 13(19): 1491–1495. DOI: 10.1002/1521-4095(200110)13:193. 0.CO;2-N.
  24. [24] G. F. Larsen, D. Vu, and M. Marquez-Sanchez. Stable zeolite/cellulose composite materials and method of preparation. Patent. 2002.
  25. [25] M.-T. Ashraf, A. A. AlHammadi, A. M. El-Sherbeeny, S. Alhammadi, W. Al Zoubi, Y. G. Ko, and M. R. Abukhadra, (2022) “Synthesis of cellulose fibers/Zeolite A nanocomposite as an environmental adsorbent for organic and inorganic selenium ions; Characterization and advanced equilibrium studies" Journal of Molecular Liquids 360: 119573. DOI: 10.1016/j.molliq.2022. 119573.
  26. [26] L. Yu, X. Shang, H. Chen, L. Xiao, Y. Zhu, and J. Fan, (2019) “A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat" Nature Communications 10(1): 1932. DOI: 10.1038/s41467-019-09849-9.
  27. [27] K. Baghdad and A. M. Hasnaoui, (2020) “Zeo lite–cellulose composite membranes: Synthesis and ap plications in metals and bacteria removal" Journal of Environmental Chemical Engineering 8(4): 104047. DOI: 10.1016/j.jece.2020.104047.
  28. [28] X. Chen, L. Yu, S. Zou, L. Xiao, and J. Fan, (2020) “Zeolite Cotton in Tube: A Simple Robust Household Water Treatment Filter for Heavy Metal Removal" Scientific Reports 10(1): 4719. DOI: 10.1038/s41598-020-61776-8.
  29. [29] J. Sommana, S. Narakaew, S. Utara, S. Thungprasert, T. Promanan, and A. Chaisena, (2025) “Surface modification of cotton fabric by kaolin-derived zeolite N to enhance efficient removal of particulate matter" Materi als Chemistry andPhysics329: 130073. DOI: 10.1016/j.matchemphys.2024.130073.
  30. [30] N.E. Zafeiropoulos. “3- Engineering the fibre– matrix interface in natural-fibre composites”. In: Proper ties and Performance of Natural-Fibre Composites. Ed. by K. L. Pickering. Woodhead Publishing, 2008, 127–162. DOI: 10.1533/9781845694593.1.127.
  31. [31] A. Ahmadon, L. S. M. Nazir, Y. F. Yeong, and S. Sab din, (2018) “Formation of pure NaX zeolite: Effect of ageing and hydrothermal synthesis parameters" IOP Conference Series: Materials Science and Engineering 458(1): 012002. DOI: 10.1088/1757-899X/458/1/012002.
  32. [32] A. Nouri, M. Jafari, M. Kazemimoghadam, and T. Mohammadi, (2012) “Effects of Hydrothermal Parameters on the Synthesis of Nanocrystalline Zeolite NaY" Clays and Clay Minerals 60(6): 610–615. DOI: 10. 1346/CCMN.2012.0600606.
  33. [33] C. W. Purnomo, C. Salim, and H. Hinode,(2012)“Syn thesis of pure Na–X and Na–A zeolite from bagasse fly ash" Microporous and Mesoporous Materials 162: 6–13. DOI: 10.1016/j.micromeso.2012.06.007.
  34. [34] S. K. Masoudian, S. Sadighi, and A. Abbasi, (2013) “Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials" Bulletin of Chemical Reaction Engineering & Catalysis 8(1): 54–60. DOI: 10.9767/bcrec.8.1.4321.54-60.
  35. [35] M.Król, J. Morawska, W. Mozgawa, and W. Pichór, (2014) “Low-temperature synthesis of zeolite from perlite waste —Part I: review of methods and phase compositions of resulting products" Materials Science-Poland 32(3): 503–513. DOI: http: //doi.org/10.2478/s13536-014-0216-y.
  36. [36] Y. Du, S. Shi, and H. Dai, (2011) “Water-bathing syn thesis of high-surface-area zeolite P from diatomite" Par ticuology 9(2): 174–178. DOI: 10.1016/j.partic.2010.06.006.
  37. [37] V. Shahedifar and A. M. Rezadoust, (2013) “Thermal and mechanical behavior of cotton/vinyl ester composites: Effects of some flame retardants and fiber treatment" Journal of Reinforced Plastics and Composites 32(10): 681–688. DOI: 10.1177/0731684413475911.
  38. [38] M. Isola, G. Colucci, A. Diana, A. Sin, A. Tonani, and V. Maurino, (2024) “Thermal properties and decomposition products of modified cotton fibers by TGA, DSC, and Py–GC/MS" Polymer Degradation and Stability 228: 110937. DOI: 10.1016/j.polymdegradstab.2024. 110937.
  39. [39] N. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, and W. Schwieger, (2015) “Thermal stability studies of zeolites A and X synthesized from South African coal flyash" Research on Chemical Intermediates 41(2): 575–582. DOI: 10.1007/s11164-013-1211-3.
  40. [40] A. Top and S. Ülkü, (2004) “Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity" Applied Clay Science 27(1): 13 19. DOI: 10.1016/j.clay.2003.12.002.
  41. [41] R. Tekin and N. Bac, (2016) “Antimicrobial behavior of ion-exchanged zeolite X containing fragrance" Microporous and Mesoporous Materials 234: 55–60. DOI: 10.1016/j.micromeso.2016.07.006.
  42. [42] S. Chen, J. Popovich, N. Iannuzo, S. E. Haydel, and D.-K. Seo, (2017) “Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin Resistant Staphylococcus aureus" ACS Applied Materials & Interfaces 9(45): 39271–39282. DOI: 10.1021/acsami.7b15001.
  43. [43] S. Demirci, Z. Ustao˘glu, G. A. Yılmazer, F. Sahin, and N. Baç, (2014) “Antimicrobial properties of zeolite X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms" Applied Biochemistry and Biotechnology 172(3): 1652–62. DOI: 10.1007/s12010-013-0647-7.
  44. [44] M.Raffi, F. Hussain, T. Bhatti, J. Akhter, A. Hameed, and M. Hassan, (2007) “Antibacterial Characterization of Silver Nanoparticles against E. Coli ATCC-15224" Journal of Materials Sciences and Technology 24: 192–196.
  45. [45] N. Torkian, A. Bahrami, A. Hosseini-Abari, M. M. Momeni, M. Abdolkarimi-Mahabadi, A. Bayat, P. Hajipour, H. Amini Rourani, M. S. Abbasi, S. Torkian, Y. Wen, M. Yazdan Mehr, and A. Hojjati Najafabadi, (2022) “Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for an tibacterial applications and photocatalytic degradation of antibiotics" Environmental Research 207: 112157. DOI: 10.1016/j.envres.2021.112157.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.