Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

P. M. Balasubramaniam1 and S. U. Prabha This email address is being protected from spambots. You need JavaScript enabled to view it.2

1Department of Electrical and Electronics Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
2Department of Electrical and Electronics Engineering, Sri Ramakrishna Engineering College, Coimbatore, India


 

Received: September 24, 2013
Accepted: July 23, 2015
Publication Date: December 1, 2015

Download Citation: ||https://doi.org/10.6180/jase.2015.18.4.08  


ABSTRACT


Classically, the aim of the electric power system is to generate electrical energy and to deliver this energy to the end-user equipment at an acceptable voltage. As nonlinear loads draw harmonic and reactive power components of current from ac mains, the quality of power deteriorates. This paper presents a review of the main power quality (PQ) problems with their associated causes and solutions with codes and standards. This paper concludes with some solutions to mitigate the Power Quality problems are presented.


Keywords: IEEE 519, Total Harmonic Distortion, Point of Common Coupling, Total Demand Distortion


REFERENCES


  1. [1] Bollen, M., “Understanding Power Quality Problems Voltage Sags and Interruptions”, IEEE Press Series on Power Engineering John Wiley and Sons, Piscataway, USA (2000). doi: 10.1109/9780470546840. ch4
  2. [2] Rajakumar, P., et al., Review on Power Quality Issues, IRACST Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498, Vol. 2, No. 1 (2012).
  3. [3] Delgado, J., Gestão da Qualidade Total Aplicada ao Sector do Fornecimento da Energia Eléctrica, Ph. D. Dissertation Electrotechnical Engineering, Universidade de Coimbra, Portugal September (2002).
  4. [4] Choi, W. Y., Kwon, J., Kim, E. H., Lee, J. J. and Kwon, B. H., “Bridgeless Boost Rectifier with Low Conduction Losses and Reduced Diode Reverse Recovery Problems,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 769780 (2007). doi: 10.1109/TIE.2007.891991
  5. [5] Lin, T., Domijan, A., Jr. and Chu, F., “ASurvey of Techniques for Power Quality Monitoring,” Int. J. Power Energy Syst., Vol. 25, No. 3, pp. 167172 (2012).
  6. [6] Chen, G., Chen, Y. and Smedley, K. M., “Three-phase Four-leg Active Power Quality Conditioner without References Calculation,” Proc. Appl. Power Electron. Conf., pp. 587593 (2004). doi: 10.1109/APEC.2004. 1295866
  7. [7] López, Y.-K., de Vicuña, L. G., Castilla, M., Matas, J. and López, M., “Sliding-mode-control Design of a High-power-factor Buck-boost-rectifier,” IEEE Trans. Ind. Electron., Vol. 46, pp. 604612 (1999).
  8. [8] Mollov, S. V. and Forsyth, A. J., “Analysis, Design and Resonant Current Control for a 1-MHz High-powerfactor Rectifier,” IEEE Trans. Ind. Electron., Vol. 46, pp. 620627 (1999). doi: 10.1109/41.767070
  9. [9] García, A. J., Cobos, J. A., Prieto, R., Alou, P. and Uceda, J., “An Alternative to Supply DC Voltages with High Power Factor,” IEEE Trans. Ind. Electron., Vol. 46, pp. 703709 (1999). doi: 10.1109/41.778219
  10. [10] Lee, J.-Y., Moon, G.-W. and Youn, M.-J., “Design of a Power-factor-Correction Converter Based on Halfbridge Topology,” IEEE Trans. Ind. Electron., Vol. 46, pp. 710723 (1999). doi: 10.1109/41.778222
  11. [11] Madigan, M. T., Erickson, R. W. and Ismail, E. H., “Integrated High-quality Rectifier-regulators,” IEEE Trans. Ind. Electron., Vol. 46, pp. 749758 (1999). doi: 10.1109/41.778229
  12. [12] Wu, T.-F. and Chen, Y.-K., “Analysis and Design of an Isolated Single Stage Converter Achieving Power-factor Correction and Fast Regulation,” IEEE Trans. Ind. Electron., Vol. 46, pp. 759767 (1999). doi: 10.1109/ 41.778230
  13. [13] Hsieh, G.-C. and Wang, C.-M., “ZCS-PWM Full-wave Boost Rectifier with Unity Power Factor and Low Conduction Losses,” IEEE Trans. Ind. Electron., Vol. 46, pp. 768779 (1999). doi: 10.1109/41.778234
  14. [14] Tseng, C.-J. and Chen, C.-L., “ANovel ZVT PWM Cúk Power-factor Corrector,” IEEE Trans. Ind. Electron., Vol. 46, pp. 780787 (1999). doi: 10.1109/41.778240
  15. [15] Ferracci, P., “Power Quality,” Schneider Electric Cahier Technique, No. 199, September (2012).
  16. [16] Zhu, P., Li, X., Kang, Y. and Chen, J., “A Novel Control Scheme in 2-phase Unified Power Quality Conditioner,” in Proc. 29th Annu. Conf. IEEE Ind. Electron. Soc., pp. 169171622 (2003). doi: 10.1109/TIE.2014. 2314055
  17. [17] Ghosh, A., Jindal, A. K. and Joshi, A., “Modified Power Quality Conditioner for Voltage Regulation of Critical Load Bus,” Proc. Power Eng. Soc. Gen. Meet., pp. 471476 (2004). doi: 10.1109/PES.2004.1372840
  18. [18] Cheng, Y. and Philippe, L., “Advanced Control Methods for the 3-phase Unified Power Quality Conditioner,” Proc. Power Electron. Spec. Conf., pp. 4263 4267 (2004). doi: 10.1109/PESC.2004.1354754
  19. [19] Tlusty, J. and Valouch, V., “Effectiveness of Unified Power Quality Conditioner for Flicker Mitigation,” Proc. 4th Int. Power Electron. Motion Control Conf., pp. 902907 (2004).
  20. [20] Khadkikar, V., Agarwal, P., Chandra, A., Barry, A. and Nguyen, T., “A Simple New Control Technique for Unified Power Quality Conditioner (UPQC),” Proc. 11th Int. Conf. Harmonics Quality Power, pp. 289 293 (2004). doi: 10.1109/ICHQP.2004.1409369
  21. [21] Esfandiari, A., Parniani, M. and Mokhtari, H., “Mitigation of Electric Arc Furnace Disturbances Using the Unified Power Quality Conditioner,” Proc. 30th Annu. Conf. Ind. Electron. Soc., pp. 14691474 (2004). doi: 10.1109/IECON.2004.1431795
  22. [22] Sepulveda, C. A., Espinoza, J. R., Moran, L. A. and Ortega, R., “Analysis and Design of a Linear Control Strategy for Three-phase UPQCs,” Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., Vol. 3, pp. 30603065 (2004). doi: 10.1109/IECON.2004.1432300
  23. [23] Ng, F., Wong, M. C. and Han, Y. D., “Analysis and Control of UPQC and its DC-link Power by Use of pq-r Instantaneous Power Theory,” Proc. Power Electron. Syst. Appl., pp. 4353 (2004). doi: 10.1109/TPEL. 2004.826499
  24. [24] Tey, L. H., So, P. L. and Chu, Y. C., “Unified Power Quality Conditioner for Improving Power Quality Using ANN with Hysteresis Control,” Proc. Int. Conf. Power Syst. Technol., pp. 14411446 (2004). doi: 10. 1109/ICPST.2004.1460229
  25. [25] Vinod Khadkikar, Enhancing Electric Power Quality Using UPQC: A Comprehensive Overview, IEEE Transactions on Power Electronics, Vol. 27, No. 5 (2012). doi: 10.1109/TPEL.2011.2172001
  26. [26] Ribeiro, P., Johnson, B., Crow, M., Arsoy, A. and Liu, Y., “Energy Storage Systems for Advanced Power Applications,” Proceedings of the IEEE, Vol. 89, No. 12, (2001). doi: 10.1109/5.975900
  27. [27] Kwon, J. M., Choi, W. Y. and Kwon, B. H., “Cost-effective Boost Converter with Reverse-recovery Reduction and Power Factor Correction,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 471473 (2008). doi: 10.1109/TIE.2007.896526
  28. [28] Tofoli, F. L., Coelho, E. A. A., de Freitas, L. C., Farias, V. J. and Vieira, J. B. Jr., “Proposal of a Soft-switching Single-phase Three-level Rectifier,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 107113 (2008). doi: 10. 1109/TIE.2007.896052
  29. [29] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std. 1159-2009 (2009).
  30. [30] Ghosh, A., Jindal, A. K. and Joshi, A., “Inverter Control Using Output Feedback for Power Compensating Devices,” Proc. Convergent Technol. Conf., pp. 48 52 (2003). doi: 10.1109/TENCON.2003.1273212
  31. [31] Rodríguez, E., Abud, D. and Arau, J., “A Novel Singlestage Single-phase DC Uninterruptible Power Supply with Power-factor Correction,” IEEE Trans. Ind. Electron., Vol. 46, pp. 11371147 (1999). doi: 10.1109/41. 808002
  32. [32] Alonso, J. M., Calleja, A. J., López, E., Ribas, J. and Scades, M. R., “A Novel Single-stage Constant-wattage High-power-factor Electronic Ballast,” IEEE Trans. Ind. Electron., Vol. 46, pp. 11481158 (1999). doi: 10. 1109/41.808004
  33. [33] Pires, V. F. and Silva, J. F., “Half-bridge Single-phase Buck-boost Type AC-DC Converter with Sliding Mode Control of the Input Source Current,” Proc. IEEElect. Power Applicat., Vol. 147, No. 1, pp. 6167 (2000). doi: 10.1049/ip-epa:20000020
  34. [34] Siu, K.-W. and Lee, Y.-S., “A Novel High-efficiency Flyback Power-factor Correction Circuit with Regenerative Clamping and Soft Switching,” IEEE Trans. Circuits Syst. I, Vol. 47, pp. 350356 (2000). doi: 10. 1109/81.841917
  35. [35] Matsui, K., Yamamoto, I., Hirose, S., Ando, K. and Kobayashi, T., “Utility-Interactive Photovoltaic Power Conditioning Systems with Forward Converter for Domestic Applications,” Proc. IEEElect. Power Applicat., Vol. 147, No. 3, pp. 199205 (2000). doi: 10.1049/ipepa:20000374
  36. [36] Buso, S., Spiazzi, G. and Tagliavia, D., “Simplified Control Technique for High-power-factor Flyback Cuk and Sepic Rectifiers Operating in CCM,” IEEE Trans. Ind. Applicat., Vol. 36, pp. 14131418 (2000). doi: 10. 1109/28.871291
  37. [37] Anderson, G. K. and Blaabjerg, F., “Current Programmed Control of a Single Phase Two-switch Buckboost Power Factor Correction Circuit,” Proc. IEEE APEC’01, pp. 350356 (2001). doi: 10.1109/APEC. 2001.911671
  38. [38] Chen, J., Maksimovic, D. and Erickson, R., “A New Low-stress Buck-boost Converter for Universal-input PFC Applications,” Proc. IEEE APEC’01, pp. 343 349 (2001).
  39. [39] Amaro, N. and Ceballos, J. M., “A Fast Algorithm for Initial Design of HTS Coils for SMES Applications,” IEEE Transactions on Applied Superconductivity, Vol. 23, No. 3 (2013). doi: 10.1109/TASC.2012.2231912
  40. [40] Chen, X. Y. and Jin, J. X., “Development of SMES Technology and its Applications in Power Grid,” Proc. Int. Conf. Appl. Supercond. Electromagn. Dev., pp. 260269 (2011). doi: 10.1109/ASEMD.2011.6145115
  41. [41] Singh, B., Al-Haddad, K. and Chandra, A., “A Review of Active Filters for Power Quality Improvement,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 5 (1999). doi: 10.1109/41.793345
  42. [42] Singh, B., Al-Haddad, K. and Chandra, A., “A Review of Active Filters for Power Quality Improvement,” IEEE Trans. Ind. Electron., Vol. 46, No. 5, pp. 960 971 (2012). doi: 10.1109/41.793345
  43. [43] Active Filters: Technical Document, 2100/1100 Series, Mitsubishi Electric Corp., Tokyo, Japan, pp. 1 36 (1989).
  44. [44] Kikuchi, A. H., “Active Power Filters,” in Toshiba GTR Module (IGBT) Application Notes, Toshiba Corp., Tokyo, Japan, pp. 4445 (1992).
  45. [45] Gyugyi, L. and Strycula, E., “Active AC Power Filters,” in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 529535 (1976).
  46. [46] Inventor: KIM, Seon Ho Daejeon Metropolitan City 301-030 (KR), Device For Improving Power Quality, European Patent Application Number: 11809896.1, Date of Filing: 22.07.2011.
  47. [47] US Patent N0.: US 6,615,147 B1, Date of Patent: Sep. 2, Inventors: Rene T. J. Onker, British Columbia, Invention: Revenue Meter with Power Quality Features (2003).
  48. [48] US Patent No.: US 8,326,576 B2, Date of Patent: Dec. 4, Inventor: Man-0n Pun, Cambridge, MA (U S), Invention: Detecting Power Quality Events in Power Distribution Networks (2012).
  49. [49] US Patent No.: WO 2011124223 A3, Date of Patent: Nov 29, Inventor(s): Lucian Asiminoaei, Sergej Kalaschnikow, Invention: Power Quality Improvement by Active Filter (2012).
  50. [50] Revenue Meter with Power Quality Features, Patent N0.: US 6,615,147 B1, Date of Patent: Sep. 2, Inventor: Rene T. J. Onker, British Columbia (2003).
  51. [51] Routimo, M., Salo, M. and Tuusa, H., “Improving the Active Power Filter Performance with a Prediction Based Reference Generation,” Nordic Workshop on Power and Industrial Electronics, Norpie (2004).
  52. [52] IEEE Standard 446-1987, “IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications,” (IEEE Orange Book). doi: 10.1049/pe:19890012
  53. [53] IEEE Std 1250-1995, “IEEE Guide for Service to Equipment Sensitive to Momentary Voltage Disturbances,” Art 5.1.1, Computers.
  54. [54] IEEE, “IEEE Guide for Service to Equipment Sensitive to Momentary Voltage Disturbances,” IEEE Std. 12501995.
  55. [55] IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems, 1421991 (1992). doi: 10.1049/pe:19890012


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.