REFERENCES
- [1] Basheer, P. A. M., Chidiac, S. E. and Long, A. E., “Predictive Models for Deterioration of Concrete Structure,” Construction and Building Materials, Vol. 10, pp. 2737 (1996). doi: 10.1016/0950-0618(95)00092-5
- [2] Thompson, N. G. and Lankard, D. R., “Improved Concretes for Corrosion Resistance,” In: Georgetown Pike, McLeen VA. US Department of Transportation: Federal Highway Administration. Report No FHWA-RD96-207 (1997).
- [3] Mehta, P. K., “Durability-critical Issues for the Future,” Concrete International, Vol. 19, pp. 2333 (1997).
- [4] Mehta, P. K., “Role of Pozzolanic and Cementitious Material in Sustainable Development of the Concrete Industry,” In: Proceedings of the 6th International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Bangkok: ACI SP178, pp. 125 (1998).
- [5] Berry, E. E. and Malhotra, V. M., “Fly Ash in Concrete,” In: Mathotra VM, Editor. Supplemental Cement Materials Concrete, Ottawa: CANMET SP-86-8E, pp. 35163 (1987).
- [6] Neville, A. M., Properties of Concrete, Essex: Longman (1995).
- [7] Sellevold, E. J. and Nilsen, T., “Condensed Silica Fume in Concrete: a World Review,” In: Mathotra VM, Editor, Supplemental Cement Materials Concrete, Ottawa: CANMET SP-86-8E, pp. 165243 (1987).
- [8] AASHTO T277-86, “Rapid Determination of the Chloride Permeability of Concrete,” American Association of States Highway and Transportation Officials: Standard Specification-Part II Tests, Washington, D. C. (1990).
- [9] ASTM C1202, “Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” Annual Book of American Society for Testing Materials Standards: V. C04.02 (1997).
- [10] Shi, C., Stegemann, J. A. and Caldwell, R. J., “Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and Its Implications on the Rapid Chloride Permeability Test (AASHTO T277 and ASTM C1220) Results,” ACI Materials Journal, Vol. 95, pp. 389394 (1998). doi: 10.14359/381
- [11] Shi, C., “Effect of Mixing Proportions of Concrete on Its Electric Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results,” Cement and Concrete Research, Vol. 34, pp. 537545 (2004). doi: 10.1016/j.cemconres.2003.09.007
- [12] Farahani, A., Taghaddos, H. and Shekarchi, M., “Prediction of Long-term Chloride Diffusion in Silica Fume Concrete in a Marine Environment,” Cement and Concrete Composites, Vol. 59, pp. 1117 (2015). doi: 10.1016/j.cemconcomp.2015.03.006
- [13] Rivera, F., Martínez, P., Castro, J. and López, M., “Massive Volume Fly-ash Concrete: a More Sustainable Material with Fly Ash Replacing Cement and Aggregates,” Cement and Concrete Composites, Vol. 63, pp. 104112 (2015). doi: 10.1016/j.cemconcomp. 2015.08.001
- [14] Lim, T. Y. D., Teng, S., Bahador, S. D. and Gjrv, O. E., “Durability of Very-high-strength Concrete with Supplementary Cementitious Materials for Marine Environments,” ACI Materials Journal, Vol. 113, pp. 95103 (2016). doi: 10.14359/51687981
- [15] Pereira, C. J. and Hegedus, L. L., “Diffusion and Reaction of Chloride Ions in Porous Concrete,” In: Proceedings of the 8th International Symposium of Chemical Reaction Engineering. Edinburgh, Scotland (1984). doi: 10.1016/0304-386X(83)90069-5
- [16] Papadakis, V. G., Roumeliotis, A. P., Fardis, M. N. and Vayenas, C. G., “Mathematical Modeling of Chloride Effect on Concretes Durability and Protection Measures,” In: R. K. Dhir and M. R. Jones (Eds.), Concrete Repair, Rehabilitation and Protection, E & FN Spon, London, pp. 165174 (1996a). doi: 10.4324/ 9780203476635_chapter_6
- [17] Papadakis, V. G., Fardis, M. N. and Vayenas, C. G., “Physicochemical Processes and Mathematical Modeling of Concrete Chlorination,” Chemical Engineering Science, Vol. 51, pp. 505513 (1996b). doi: 10. 1016/0009-2509(95)00318-5
- [18] Papadakis, V. G., “Effect of Supplementary Cementing Materials on Concrete Resistance against Carbonation and Chloride Ingress,” Cement and Concrete Research, Vol. 30, pp. 291299 (2000). doi: 10.1016/ S0008-8846(99)00249-5
- [19] Papadakis, V. G. and Tsimas, S., “Supplementary Cementing Materials in Concrete Part I: Efficiency and Design,” Cement and Concrete Research, Vol. 32, pp. 15251532 (2002). doi: 10.1016/S0008-8846(02) 00827-X
- [20] Hindmarsh, A. C. and Gear, C. W., Ordinary Differential Equation System Solver, UCIO-30001, Rev. 3, Lawrence Livermore Laboratories, CA (1974).
- [21] Tang, L. and Nilson, L. O., “Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars,” Cement and Concrete Research, Vol. 23, pp. 247253 (1993). doi: 10.1016/0008-8846(93)90089-R
- [22] Martín-Pérez, B., Zibara, H., Hooton, R. D. and Thomas, M. D. A., “A Study of the Effect of Chloride Binding on Service Life Prediction,” Cement and Concrete Research, Vol. 32, pp. 12151223 (2000). doi: 10.1016/S0008-8846(00)00339-2
- [23] Brebbia, C. A., Tslles, J. C. and Wrobl, L. C., Boundary Element Techniques: Theory and Application Engineering, New York: Springer-Verlag (1984). doi: 10.1007/978-94-009-6192-0_2
- [24] Kane, J. H., Boundary Element Analysis, Engineering Continuous Mechanism, Englewood: Prentice Hall (1994).