REFERENCES
- [1] Yu, S. B. (2012) Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Discrete Dynamics in Nature and Society 2012(1), 857868. doi: 10.1155/2012/ 208167
- [2] Chen, F. D., Z. Z. Ma, and H. Y. Zhang (2012) Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges. Nonlinear Analysis: Real World Applications 13(6), 27902793. doi: 10. 1016/j.nonrwa.2012.04.006
- [3] Chen, L. J., and F. D. Chen (2011) Dynamic behaviors of the periodic predator-prey system with distributed time delays and impulsive effect. Nonlinear Analysis: Real World Applications 12(4), 24672473. doi: 10. 1016/j.nonrwa.2011.03.002
- [4] Xie, X. D., Y. L. Xue, J. H. Chen, and T. T. Li (2016) Permanence and global attractivity of a non autonomous modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge. Advances in Difference Equations 2016(1), 184. doi: 10.1186/ s13662-016-0892-5
- [5] Haque, M. (2011) Adetailed study of the BeddingtonDeAngelis predator-prey model. Mathematical Biosciences 234(1), 116. doi: 10.1016/j.mbs.2011.07.003
- [6] Xu, C. Q., S. L. Yuan, and T. H. Zhang (2016) Global dynamics of a predator-prey model with defense mechanism for prey. Applied Mathematics Letters 62, 4248.
- [7] Al Basheer, A., R. D. Parshad, E. Quansah, S. B. Yu, and R. K. Upadhyay (2018) Exploring the dynamics of a Holling-Tanner model with cannibalism in both predator and prey population. International Journal of Biomathematics 11(01), 1850010. doi: 10.1142/ S1793524518500109
- [8] Lin, Y. H., X. D. Xie, F. D. Chen, and T. T. Li (2016) Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes. Advances in Difference Equations 2016(1), 181. doi: 10.1186/s13662-016-0887-2
- [9] Zhang, L., J. Liu, and M. Banerjee (2017) Hopf and steady state bifurcation analysis in a ratio dependent predator-prey model. Communications in Nonlinear Science and Numerical Simulation 44, 5273. doi: 10.1016/j.cnsns.2016.07.027
- [10] Wu, R. X., and L. Li (2013) Permanence and global attractivity of the discrete predator-prey system with Hassell-Varley-Holling III type functional response. Discrete Dynamics in Nature and Society 2013(2), 295321. doi: 10.1155/2013/393729
- [11] Garay, J., R. Cressman, F. Xu, Z. Varga, and T. Cabello (2015) Optimal forager against ideal free distributed prey. American Naturalist 186, 111122. doi: 10. 1086/681638
- [12] Xu, F., R. Cressman, and V. Krivan (2014) Evolution of mobility in predator-prey systems. Discrete and Continuous Dynamical Systems-Series B 19, 3397 3432. doi: 10.3934/dcdsb.2014.19.3397
- [13] Sasmal, S. K. (2018) Population dynamics with multiple Allee effects induced by fear factors-A mathematical study on prey-predator interactions. Applied Mathematical Modelling 64, 114. doi: 10.1016/j.apm. 2018.07.021
- [14] Zanette, L. Y., A. F. White, M. C. Allen, and M. Clinchy (2011) Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 13981401. doi: 10.1126/science. 1210908
- [15] Sheriff, M. J., C. J. Krebs, and R. Boonstra (2009) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology 78(6), 12491258. doi: 10.1111/j.1365-2656. 2009.01552.x
- [16] Orrock, J. L., and R. J. Fletcher (2014) An island-wide predator manipulation reveals immediate and long lasting matching of risk by prey. Proceedings of the Royal Society of London B: Biological Sciences 281(1784), 20140391. doi: 10.1098/rspb.2014.0391
- [17] Wang, X. Y., and X. F. Zou (2017) Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bulletin of Mathematical Biology 79(6), 13251359. doi: 10.1007/s11538-017-0287-0
- [18] Wang, X. Y., L. Y. Zanette, and X. F. Zou (2016) Modelling the fear effect in predator-prey interactions. Journal of Mathematical Biology 73(5), 11791204. doi: 10.1007/s00285-016-0989-1
- [19] Freedman, H. I. (1979) Stability analysis of a predator-prey system with mutual interference and density dependent death rates. Bulletin of Mathematical Biology 41(1), 6778. doi: 10.1007/BF02547925
- [20] Ma, Z. Z., F. D. Chen, C. Q. Wu, and W. L. Chen (2013) Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Applied Mathematics and Computation 219(15), 79457953. doi: 10.1016/j.amc. 2013.02.033
- [21] Chen, L. J., F. D. Chen, and Y. Q. Wang (2013) Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics. Communications in Nonlinear Science and Numerical Simulation 18(11), 31743180. doi: 10.1016/j.cnsns.2013. 04.004
- [22] Yu, S. B., and F. D. Chen (2014) Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference. International Journal of Biomathematics 7(03), 1450028. doi: 10.1142/S1793524514500284
- [23] Wu, R. X. (2010) Permanence of a discrete periodic Volterra model with mutual interference and Beddington-DeAngelis functional response. Discrete Dyna
mics in Nature and Society 2010(1026), 10381045. doi: 10.1155/2010/246783
- [24] Li, Z., M. A. Han, and F. D. Chen (2014) Global stability of a predator-prey system with stage structure and mutual interference. Discrete Continuous Dynamical Systems-Series B 19(1), 173187.
- [25] Sansone, G., and R. Conti (1964) Non-Linear Differential Equations, Pergamon Press, London.