Ali Abdulmohsin Khamees This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Khalid K. Shadhan1
1Department of Civil Engineering College of Engineering, University of Babylon, Babylon, Iraq
Received: June 10, 2020 Accepted: August 4, 2020 Publication Date: February 1, 2021
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Tree-like steel columns have been used in vast structures with large spaces like airports and football stadiums. Very few studies dealt with the structural behavior of tree-like columns, and there are non-clear results about it. The objective of this study was to find the effect of the branch’s height to total height and specimen’s width to total width ratio on the structural behavior of a tree-like steel column (two-branch type). Seventeen plane specimens with a rectangular cross-section area were investigated. All specimens were tested under static load and evaluated in terms of maximum failure load, maximum vertical displacement, and failure mode. The two-branches type was taken, and the cross-section area of each branch was taken half of the trunk’s cross-section area. Results showed that maximum failure load and buckling load increased between (2.5 - 28.9) % and (1.4 - 37.5) % respectively when the branch’s height to total height ratio increased from 25 to 75 %; furthermore, they decreased between (7.2 - 42.3) % and (8.4 - 48.4) % respectively when the specimen’s width to the total width increased from 25 to 100 %. Maximum vertical displacement decreased between (5.9 - 31.3) % when branching height to total height ratio increased; moreover, it increased between (2.0 - 46.2) % when the specimen width to total width increased. All specimens failed with buckling mode.
[2] Peter Von Buelow. A Geometric Comparison of Branching Structures in Tension and Compression Versus Minimal Paths. IASS Conference Proceedings 2007– Shell and Spatial Structures: Structural Architecture – Towards the future looking to the past, page 252, 2007.
[3] E. Gawell. Non-Euclidean Geometry In The Modeling Of Contemporary Architectural Forms. The Journal of Polish Society for Geometry and Engineering Graphics, 24:35–43, 2013.
[4] R. Li. Research on Branching Structures Based on Fractal Theory. Barbin Inst. Technol. Harbin, 2014.
[5] Jeffrey Hunt, Walter Haase, and Werner Sobek. A design tool for spatial tree structures. Journal of the International Association for Shell and Spatial Structures, 50(160):3–10, 2009.
[6] Xirong Peng. Structural Topology Optimization Method for Morphogenesis of Dendriforms. Open Journal of Civil Engineering, 06(04):526–536, 2016.
[7] Qian Zhang, Zhihua Chen, Xiaodun Wang, and Hongbo Liu. Form-finding of tree structures based on sliding cable element. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 48(4):362–372, 2015.
[8] Changyu Cui, Baoshi Jiang, and Guoyong Cui. The sensitivity-based morphogenesis method for framed structures. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 46(7):1–8, 2013.
[9] Changyu Cui and Hui Yan. An advanced structural morphosis technique - Extended evolutionary structural optimization method and its engineering applications. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 39(10):42–47, 2006.
[10] Mutsuro Sasaki. Morphogenesis of flux structure. 2007.
[11] Yue Wu, Jianliang Zhang, and Zhenggang Cao. Formfinding analysis and engineering application of branching structures. Jianzhu Jiegou Xuebao/Journal of Building Structures, 32(11):162–168, 2011.
[12] Flamur Ahmeti. Efficiency of Lightweight Structural Forms : The Case of Tree- like Structures - A comparative Structural Analysis. PhD thesis, 2007.
[13] R Gary Black and Abolhassan Astaneh-Asl. Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames. International Journal of Civil and Environmental Engineering, 8(2):206–213, 2014.
[14] ASTM-A650-87. Specification for Pressure Vessel Plates, Alloy Steel, Quenched and Tempered NickelCobalt-Molybdenum-Chromium. Technical report, ASTM International, West Conshohocken, PA, 1987.
[15] ASTM-A370-19e1. Standard Test Methods and Definitions for Mechanical Testing of Steel Products. Technical report, ASTM International, West Conshohocken, PA, 2019.
[16] ASTM-A36-A36M-19. Standard Specification for Carbon Structural Steel, ASTM International. Technical report, ASTM International, West Conshohocken, PA, 2019.
[17] BS-4449:2016. Steel for the reinforcement of concrete, Weldable reinforcing steel bar, Coil, and detailed product Specification. Technical report.
[18] ISO-17637:2016. Specifies The Visual Testing of Fusion Welds in Metallic Materials. Technical report.
[19] ISO-TC44-SC 5. Testing and inspection of welds. Technical report.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.