Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Erna Tri Herdiani1, Nurtiti Sunusi This email address is being protected from spambots. You need JavaScript enabled to view it.1, and Puji Puspa Sari1

1Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, South Sulawesi, Indonesia, 90245


 

Received: October 7, 2020
Accepted: May 17, 2021
Publication Date: July 5, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202202_25(1).0002  


ABSTRACT


An outlier is an observation whose pattern does not follow the majority of the data. Outliers in this study were characterized by extreme distance values, both very small and very large, exceeding the predetermined value. The method used in this research is Minimum Vector Variance (MVV) method because it has good computational efficiency and is robust against outliers. Based on the MVV algorithm applied to data on HIV patients in Indonesia in 2016-2018. The results showed that the MVV method produced more extreme distances than the Mahalanobis distance in labeling outliers. In the research data, it is found that there are 16 regions including outliers of the 34 observation used.


Keywords: HIV, MVV, Outliers, Mahalanobis Distance


REFERENCES


  1. [1] P. J. Rousseeuw and B. C. Van Zomeren, (1990) “Unmasking multivariate outliers and leverage points" Journal of the American Statistical association 85(411):633–639. DOI: 10.1080/01621459.1990.10474920.
  2. [2] F. Angiulli and C. Pizzuti, (2005) “Outlier mining in large high-dimensional data sets" IEEE transactions on Knowledge and Data engineering 17(2): 203–215. DOI: 10.1109/TKDE.2005.31.
  3. [3] A. S. Hadi, (1992) “Identifying multiple outliers in multivariate data" Journal of the Royal Statistical Society: Series B (Methodological) 54(3): 761–771. DOI:10.2307/2345856.
  4. [4] P. J. Rousseeuw and S. Van Aelst, (2009) “Minimum volume ellipsoid" Wiley Interdisciplinary Reviews: Computational Statistics 1: 71–82. DOI: 10 . 1002 /wics.19.
  5. [5] M. Hubert, M. Debruyne, and P. J. Rousseeuw, (2018) “Minimum covariance determinant and extensions"Wiley Interdisciplinary Reviews: Computational Statistics 10(3): e1421. DOI: doi:10.1002/wics.1421.
  6. [6] P. J. Rousseeuw and K. V. Driessen, (1999) “A fast algorithm for the minimum covariance determinant estimator" Technometrics 41(3): 212–223. DOI: 10.1080/ 00401706.1999.10485670.
  7. [7] D. E. Herwindiati, M. A. Djauhari, and M. Mashuri, (2007) “Robust multivariate outlier labeling" Communications in Statistics—Simulation and Computation ® 36(6): 1287–1294. DOI: 10 . 1080 /03610910701569044.
  8. [8] H. Ali, S. S. S. Yahaya, and Z. Omar. “The efficiency of reweighted minimum vector variance”. In: AIP Conference Proceedings. 1602. 1. American Institute of Physics, 2014, 1151–1156. DOI: doi : 10 . 1063/1 .4882629.
  9. [9] E. T. Herdiani, P. P. Sari, and N. Sunusi. “Detection of Outliers in Multivariate Data using Minimum Vector Variance Method”. In: Journal of Physics: Conference Series. 1341. 9. IOP Publishing, 2019, 92004. DOI: 10.1088/1742-6596/1341/9/092004.
  10. [10] K. K. R. Indonesia, (2018) “Kementrian Kesehatan Republik Indonesia" Data dan Informasi Profil Kesehatan Indonesia:
  11. [11] P. Riono and S. Jazant, (2004) “The current situation of the HIV/AIDS epidemic in Indonesia" AIDS education and prevention 16(Supplement A): 78–90. DOI: 10.1521/aeap.16.3.5.78.35531.
  12. [12] G. J. Culbert, V. A. Earnshaw, N. M. S. Wulanyani, M. P. Wegman, A. Waluyo, and F. L. Altice, (2015) “Correlates and experiences of HIV stigma in prisoners living with HIV in Indonesia: a mixed-method analysis" Journal of the Association of Nurses in AIDS Care 26(6): 743–757. DOI: 10.1016/j.jana.2015.07.006.
  13. [13] S. M. Kimani, M. S. Painschab, M.-J. Horner, M. Muchengeti, Y. Fedoriw, M. S. Shiels, and S. Gopal, (2020) “Epidemiology of haematological malignancies in people living with HIV" The Lancet HIV: DOI: 10 .1016/S2352-3018(20)30118-1.
  14. [14] R. Johnson and D.W.Wichern, (2007) “Applied Multivariate Sttistical Analysis" 6th edition.New Jersey: Printice Hall:
  15. [15] D. E. Herwindiati and S. M. Isa. “The robust principal component using minimum vector variance”. In: Proceedings of the World Congress on Engineering. 1.2009, 325–329.
  16. [16] P. Huber, (1981) “Robust Statistics" Canada: A John Wiley & Sons, Inc.


Latest Articles