Karyanto This email address is being protected from spambots. You need JavaScript enabled to view it.1,2, N. Haerudin2, A. Zaenudin2, Suharno2, I.G.B. Darmawan2, M. Adli2, and P. Manurung3
1Doctoral Program of Mathematics and Natural Science, University of Lampung, Jalan Prof. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia 2Department of Geophysical Engineering, University of Lampung, Jalan Prof. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia 3Department of Physics, University of Lampung, Jalan Prof. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia
Received: December 20, 2020 Accepted: June 29, 2021 Publication Date: October 11, 2021
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Steady-state model of geothermal system in Way Ratai for exploration activities was numerically modelled by using the HYDROTHERM INTERACTIVE software based on the Newton-Raphson algorithm. In the present numerical modelling, cross-sectional area was determined by around 18 km in length of northwest-southeast (NW-SE) direction and 5 km in vertical direction from a mean sea level (msl) using grids width of 100 m, 200 m, and 500 m. Numerical simulation was run for 100,000 years using an interval 1000 years along with manifestation data as reference current conditions. Significant results of simulation were obtained at a 25,000 iteration years, identifying as steady-state condition for theWay Ratai geothermal system. The numerical results show that geothermal reservoirs potentially has a length range of approximately 9 km, with a thickness of 0.5-1.5 km with a temperature ranging from 250 - 350C. The reservoir’s depth is ranging from 600-1200 m beneath thick caprocks and strengthens previous AMT research results. The distribution of steam trapped in the southeastern part of the Way Ratai peak becomes an important target for exploration drilling. Furthermore, according to large area, thickness, and high reservoir temperature from numerical models, the Way Ratai geothermal system is potential to being explored because the geothermal reservoirs contain a high enthalpy mass of steam.
Keywords: geothermal, Way Ratai numerical model, reservoir temperature, steady-state
REFERENCES
[1] K. Karyanto, N. Haerudin, R. Mulyasari, S. Suharno, and P. Manurung, (2020) “Geothermal Potential Assesment of Way Ratai Area Based on Thermal Conductivity Measurement to Measure Thermal Properties of Rocks" Journal of the Earth and Space Physics 45(4): 89–98. DOI: 10.22059/jesphys.2020.267095.1007048.
[2] H. Nandi, K. Karyanto, and K. Yudi, (2016) “RADON AND THORON MAPPING TO DELINEATE THE LOCAL-FAULT IN THE WAY RATAI GEOTHERMAL FIELD LAMPUNG INDONESIA" ARPN Journal of Engineering and Applied Sciences 11(7): 4804–4809.
[3] R. Donovan, K. Karyanto, N. Haerudin, and O. Dewanto, (2018) “Studi Sifat Termal Batuan Daerah Lapangan Panas Bumi Way Ratai Berdasarkan Pengukuran Metode Konduktivitas Termal" Jurnal Geofisika Eksplorasi 4(3): 103–119. DOI: 10.23960/JGE.V4I3.1077.
[4] S. Suryadi, N. Haerudin, K. Karyanto, and Y. Sudrajat, (2019) “IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN LAPANGAN PANAS BUMI WAY RATAI BERDASARKAN DATA AUDIO MAGNETOTELLURIC (AMT)" JGE (Jurnal Geofisika Eksplorasi) 3(1): 85–97. DOI: 10.23960/JGE.V3I1.1033.
[5] M. K. Putri and A. H. Suharno, “Introduction to Geothermal System of Way Ratai":
[6] F. Vehling, J. Hasenclever, and L. Rüpke, (2018) “Implementation strategies for accurate and efficient control volume-based two-phase hydrothermal flow solutions" Transport in Porous Media 121(2): 233–261. DOI: 10.1007/s11242-017-0957-2.
[7] S. Borovi´c, M. Pola, A. Baˇcani, and K. Urumovi´c, (2019) “Constraining the recharge area of a hydrothermal system in fractured carbonates by numerical modelling" Geothermics 82: 128–149. DOI: 10.1016/j.geothermics.2019.05.017.
[8] Y. Fujimitsu, Y. Ito, J. Nishijima, and D. Oka. “Numerical Modeling of Hydrothermal Systems around Kuju Volcanic Field-An Attempt of Numerical Modeling for a Broad Geothermal System”. In: Proceedings. 2015.
[9] L. Magnusdottir and S. Finsterle, (2015) “An iTOUGH2 equation-of-state module for modeling supercritical conditions in geothermal reservoirs" Geothermics 57: 8–17. DOI: 10.1016/j.geothermics.2015.05.003.
[10] M. Pola, P. Fabbri, L. Piccinini, and D. Zampieri, (2015) “Conceptual and numerical models of a tectonically-controlled geothermal system: A case study of the Euganean Geothermal System, Northern Italy" Central European Geology 58(1-2): 129–151. DOI: 10.1556/24.58.2015.1-2.9.
[11] M. Matsumoto, (2020) “A single-phase reservoir simulation method based on a roughly distributed and highly permeable fracture network model with applications to production and reinjection problems" Geothermics 84: 101744. DOI: 10.1016/j.geothermics.2019.101744.
[12] R. Pashkevich and K. Pavlov. “Thermal power potential assessment of Avacha geothermal system”. In: IOP Conference Series: Earth and Environmental Science. 367. 1. IOP Publishing. 2019, 012016. DOI: 10.1088/1755-1315/367/1/012016.
[13] R. Pashkevich and D. Mamaev. “Thermohydrodynamic model of the Koshelev geothermal system, Kamchatka, Russia”. In: IOP Conference Series: Earth and Environmental Science. 367. 1. IOP Publishing. 2019, 012013. DOI: 10 . 1088 / 1755 -1315/367/1/012013.
[14] H. Saibi, (2011) “3D Numerical model of the Obama hydrothermal–geothermal system, Southwestern Japan" Computational Geosciences 15(4): 709. DOI: 10 1007/s10596-011-9237-3.
[15] A. Setyawan, S. Ehara, Y. Fujimitsu, and J. Nishijima. “An Estimate of the Resources Potential of Ungaran Geothermal Prospect for Indonesia Power Generation”. In: Proceedings34th World Geothermal Congress. Indonesia: Bali. 2010.
[16] S. Suharno, R. Amukti, A. Hidayatika, M. Putri, et al. “Geothermal Prospect of Padang Cermin Pesawaran Lampung Province, Indonesia”. In: Proceedings World Geothermal Congress 2015. 1. 1. IGA. 2015.
[17] M. Raguenel, T. Driesner, and F. Bonneau, (2019) “Numerical modeling of the geothermal hydrology of the Volcanic Island of Basse-Terre, Guadeloupe" Geothermal Energy 7(1): 1–16. DOI: 10.1186/s40517-019-0144-5.
[18] H. I. Reynolds, M. T. Gudmundsson, T. Högnadóttir, and G. Axelsson, (2019) “Changes in Geothermal Activity at Bárdarbunga, Iceland, Following the 2014–2015 Caldera Collapse, Investigated Using Geothermal System Modeling" Journal of Geophysical Research: Solid Earth 124(8): 8187–8204. DOI: 10.1029/2018JB017290.
[19] C. A. Coulon, P. A. Hsieh, R. White, J. B. Lowenstern, and S. E. Ingebritsen, (2017) “Causes of distal volcanotectonic seismicity inferred from hydrothermal modeling" Journal of Volcanology and Geothermal Research 345: 98–108. DOI: 10.1016/j.jvolgeores.2017.07.011.
[20] K. L. Kipp, P. A. Hsieh, and S. R. Charlton. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM–Version 3. US Department of the Interior, US Geological Survey, 2008. DOI: 10.3133/TM6A25.
[21] I. G. B. Darmawan, L. D. Setijadji, and D. Wintolo, (2015) “Geology and geothermal system in Rajabasa Volcano South Lampung Regency, Indonesia (Approach to field observations, water geochemistry and magnetic methods)" Geology 19: 25.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.