REFERENCES
- [1] W. D. Callister and D. G. Rethwisch. Materials science and engineering. 5. John wiley & sons New York, 2011.
- [2] G. Dhaliwal and G. Newaz, (2020) “Flexural response of degraded polyurethane foam core sandwich beam with initial crack between facesheet and core" Materials 13(23): 1–18. DOI: 10.3390/ma13235399.
- [3] N. Uddin, A. Vaidya, U. Vaidya, and S. Pillay. “Thermoplastic composite structural insulated panels (CSIPs) for modular panelized construction”. In: Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering. Elsevier, 2013, 302–316.
- [4] A. Petras and M. Sutcliffe, (2000) “Indentation failure analysis of sandwich beams" Composite Structures 50(3): 311–318. DOI: 10.1016/S0263-8223(00)00122-7.
- [5] Z. Salleh, M. Islam, J. Epaarachchi, and H. Su, (2016) “Mechanical properties of sandwich composite made of syntactic foam core and GFRP skins" AIMS Materials Science 3(4): 1704–1727. DOI: 10.3934/matersci.2016.4.1704.
- [6] S.-S. Shi, Z. Sun, X.-Z. Hu, and H.-R. Chen, (2014) “Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening" Composites Part A: Applied Science and Manufacturing 67: 102–110. DOI: 10.1016/j.compositesa.2014.08.017.
- [7] F. Avilés and L. Carlsson, (2006) “Experimental study of debonded sandwich panels under compressive loading" Journal of Sandwich Structures and Materials 8(1): 7–31. DOI: 10.1177/1099636206054996.
- [8] J. Xiong, A. Vaziri, R. Ghosh, H. Hu, L. Ma, and L. Wu, (2016) “Compression behavior and energy absorption of carbon fiber reinforced composite sandwich panels made of three-dimensional honeycomb grid cores" Extreme Mechanics Letters 7: 114–120. DOI: 10.1016/j.eml.2016.02.012.
- [9] Y. Xiao, Y. Hu, J. Zhang, C. Song, X. Huang, J. Yu, and Z. Liu, (2018) “The Bending Responses of Sandwich Panels with Aluminium Honeycomb Core and CFRP Skins Used in Electric Vehicle Body" Advances in Materials Science and Engineering 2018: DOI: 10.1155/2018/5750607.
- [10] P. Yang, Q. Zhou, X.-X. Yuan, J. Van Kasteren, and Y.-Z.Wang, (2012) “Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems" Polymer Degradation and Stability 97(7): 1101–1106. DOI: 10.1016/j.polymdegradstab.2012.04.007.
- [11] Y. Khalil, (2019) “Sustainability assessment of solvolysis using supercritical fluids for carbon fiber reinforced polymers waste management" Sustainable Production and Consumption 17: 74–84. DOI: 10.1016/j.spc.2018.09.009.
- [12] C. Chaabani, E.Weiss-Hortala, and Y. Soudais, (2017) “Impact of Solvolysis Process on Both Depolymerization Kinetics of Nylon 6 and Recycling Carbon Fibers from Waste Composite" Waste and Biomass Valorization 8(8): 2853–2865. DOI: 10.1007/s12649-017-9901-5.
- [13] Y. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, (2019) “Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review" Frontiers in Materials 6: DOI: 10.3389/fmats.2019.00226.
- [14] M. Sanjay, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. Pruncu, and A. Khan, (2019) “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization" Carbohydrate Polymers 207: 108–121. DOI: 10.1016/j.carbpol.2018.11.083.
- [15] P. Ardiyanto, P. Suwarta, I. Sidharta, W. Wijanarko, et al. “Thickness Effect of Polyurethane Foam Core on the Flexural Behaviour of Composite Sandwich Materials”. In: Applied Mechanics and Materials. 758. Trans Tech Publ. 2015, 1–6.
- [16] S. B. Loganathan, H. K. Shivanand, et al., (2015) “Effect of core thickness and core density on low velocity impact behavior of sandwich panels with PU foam core" Journal of Minerals and Materials Characterization and Engineering 3(03): 164.
- [17] W.Witkiewicz and A. Zieli ´ nski, (2006) “Properties of the polyurethane (PU) light foams" Advances in Materials Science 6(2): 35–51.
- [18] Y. Rostamiyan and H. Norouzi, (2016) “Flatwise Compression Strength and Energy Absorption of Polyurethane Foam-Filled Lattice Core Sandwich Panels" Strength of Materials 48(6): 801–810. DOI: 10.1007/s11223-017-9827-y.
- [19] E. Labans, K. Kalnins, and C. Bisagni, (2019) “Flexural behavior of sandwich panels with cellular wood, plywood stiffener/foam and thermoplastic composite core" Journal of Sandwich Structures and Materials 21(2): 784–805. DOI: 10.1177/1099636217699587.
- [20] R. Jayaram, V. Nagarajan, and K. Vinod Kumar, (2017) “Polyester pinning effect on flexural and vibrational characteristics of foam filled honeycomb sandwich panels" Latin American Journal of Solids and Structures 14(7): 1314–1326. DOI: 10.1590/1679-78253688.
- [21] Y. Gupta, A. Jacob, A. Mohanty, et al., (2020) “Effect of the core thickness on the flexural behaviour of polymer foam sandwich structures" IOP SciNotes 1(2): 024404.
- [22] P. Jagadeesh, Y. Thyavihalli Girijappa, M. Puttegowda, S. Rangappa, and S. Siengchin, (2020) “Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview" Journal of Natural Fibers: DOI: 10.1080/15440478.2020.1854145.
- [23] M. Hemath, S. Mavinkere Rangappa, V. Kushvaha, H. Dhakal, and S. Siengchin, (2020) “A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites" Polymer Composites 41(10): 3940–3965. DOI: 10.1002/pc.25703.
- [24] I. I. Marhoon, (2017) “Mechanical and physical properties of polyurethane composites reinforced with carbon black N990 particles" International Journal of Scientific & Technology Research 6(08): 225–228.
- [25] I. ASTM, (2003) “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials" ASTM D790:
- [26] I. ASTM, (2000) “Standard Test Method for Flexural Properties of Sandwich Constructions" ASTM C393:
- [27] M. Akonda, M. Stefanova, P. Potluri, and D. Shah, (2017) “Mechanical properties of recycled carbon fibre/polyester thermoplastic tape composites" Journal of Composite Materials 51(18): 2655–2663. DOI: 10.1177/0021998316672091.
- [28] M. Boulanghien, M. R’Mili, G. Bernhart, F. Berthet, and Y. Soudais, (2018) “Mechanical Characterization of Carbon Fibres Recycled by Steam Thermolysis: A Statistical Approach" Advances in Materials Science and Engineering 2018: DOI: 10.1155/2018/8630232.
- [29] G. Jiang, S. J. Pickering, E. Lester, P. Blood, N. Warrior, and S. Pickering. “Recycling carbon fibre/epoxy resin composites using supercritical propanol”. In: 16th International Conference on Composite Materials, Kyoto, Japan. Japan Society for Composite Materials Kyoto, Japan. 2007.
- [30] G. Maradini, M. Oliveira, L. Carreira, D. Guimarães, D. Profeti, A. Dias Júnior, W. Boschetti, B. Oliveira, A. Pereira, and S. Monteiro, (2021) “Impact and tensile properties of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystal: A previous study extension" Polymers 13(11): DOI: 10.3390/polym13111878.
- [31] G. Gündüz, D. Erol, and N. Akka¸s, (2005) “Mechanical properties of unsaturated polyester-isocyanate hybrid polymer network and its E-glass fiber-reinforced composite" Journal of Composite Materials 39(17): 1577–1589. DOI: 10.1177/0021998305051086.
- [32] G. Glória, M. Teles, F. Lopes, C. Vieira, F. Margem, M. Gomes, and S. Monteiro, (2017) “Tensile strength of polyester composites reinforced with PALF" Journal of Materials Research and Technology 6(4): 401–405. DOI: 10.1016/j.jmrt.2017.08.006.
- [33] R. Rajan, J. Riihivuori, E. Rainosalo, M. Skrifvars, and P. Järvelä, (2014) “Effect of viscose fabric modification on the mechanical and water absorption properties of composites prepared through vacuum infusion" Journal of Reinforced Plastics and Composites 33(15): 1416–1429. DOI: 10.1177/0731684414534748.
- [34] M. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, (2018) “Characterization and properties of natural fiber polymer composites: A comprehensive review" Journal of Cleaner Production 172: 566–581. DOI: 10.1016/j.jclepro.2017.10.101.
- [35] M. K. Gupta and R. Gond, (2017) “Influence of concentrations of alkali treatment on mechanical and dynamic mechanical properties of hemp/polyester composite" American J Polym Sci Eng 5: 24–33.
- [36] N. Bonnia, S. Ahmad, I. Zainol, A. Mamun, M. Beg, and A. Bledzki, (2010) “Mechanical properties and environmental stress cracking resistance of rubber toughened polyester/kenaf composite" Express Polymer Letters 4(2): 55–61. DOI: 10.3144/expresspolymlett.2010.10.
- [37] M. Azmi, H. Abdullah, and M. Idris. “Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component”. In: 50. 1. 2013. DOI: 10.1088/1757-899X/50/1/012067.
- [38] J. Li, Q. Yan, and Z. Cai, (2021) “Mechanical properties and characteristics of structural insulated panels with a novel cellulose nanofibril-based composite foam core" Journal of Sandwich Structures and Materials 23(5): 1701–1716. DOI: 10.1177/1099636220902051.
- [39] A. Mirzapour, M. Beheshty, and M. Vafayan, (2005) “The response of sandwich panels with rigid polyurethane foam cores under flexural loading" Iranian Polymer Journal (English Edition) 14(12): 1082–1088.