Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Nur Lailatul Rahmah1,2, Siti Mazlina Mustapa Kamal This email address is being protected from spambots. You need JavaScript enabled to view it.1, Alifdalino Sulaiman1, Farah Saleena Taip1, and Shamsul Izhar Siajam3

1Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
2Department of Agro-Industrial Technology, Universitas Brawijaya, Malang, East Java 65145, Indonesia
3Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia


 

Received: December 9, 2021
Accepted: March 3, 2022
Publication Date: April 29, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202302_26(2).0003  


ABSTRACT


Piper betle Linn. (PBL) leaves is a medical plant commonly available in Malaysia, Indonesia, and other South and Southeast Asia countries. It contains high phenolic compounds, which allows it to be used as remedies that can treat many infectious diseases and is considered safe and cost-effective as a medicine. However, PBL leaves are a perishable commodity that requires an extraction process to obtain the benefit. A green process called pressurized hot water extraction (PHWE) can potentially extract the phenolic compounds from PBL leaves. There are many kinds of research related to PBL leaves, but lack of focus on the extraction optimization of phenolic compounds and antioxidants from PBL leaves using PHWE. This research aims to optimize the PHWE process of phenolic compounds and antioxidants from PBL leaves using Response Surface Methodology (RSM) - Box-Behnken Design (BBD). The RSM-BBD consisted of three dependent variables (process parameters), namely time (5-25 min), temperature (150-250oC), and solid loading (5-15%) at a pressure range of 0.4761-3.9760 MPa. The responses for the optimization were total phenolic content (TPC) and antioxidant activity. The optimal conditions were achieved at 210oC, 5 min, and 15% solid loading, producing 8.079 mg GAE/g of TPC and 92.561% of antioxidant activity. The validation shows that the predicted values are 83% (TPC) and 99.52% (antioxidant activity) compared to actual data. This result indicates that PHWE is a potential extraction method to extract phenolic compounds and antioxidants from PBL leaves.


Keywords: Piper betle L. leaves, total phenolic content, antioxidant activity, subcritical water


REFERENCES


  1. [1] D. Pradhan, K. A. Suri, D. K. Pradhan, and P. Biswasroy, (2013) “Golden Heart of the Nature : Piper betle L" Journal of Pharmacognosy and Phytochemistry 1(6): 147–167.
  2. [2] D. Alighiri, E. Cahyono,W. Tirza Eden, E. Kusuma, and K. Imam Supardi, (2018) “Study on the improvement of essential oil quality and its repellent activity of betel leaves oil (Piper betle l.) from Indonesia" Orient. J. Chem. 34(6): 2913–2926.
  3. [3] D. Gupta and A. Singh, (2016) “Piper betle and some Indian Plant for Antidepressant Activity: A Review" Research Journal of Pharmaceutical, Biological and Chemical Sciences (7): 1670–1678.
  4. [4] N. A. Ghazali, A. Elmy, L. C. Yuen, N. Z. Sani, S. Das, F. Suhaimi, R. Yusof, N. H. Yusoff, and Z. C. Thent, (2016) “Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat" J. Ayurveda Integr. Med. 7(4): 198–208. DOI: 10.1016/j.jaim.2016.08.008.
  5. [5] E. M. Jamelarin and L. O. Balinado, (2019) “Evaluation of antibacterial activity of crude aqueous, ethanolic and methanolic leaf extracts of Piper retrofractum Vahl. And Piper betle L" Asian Journal of Biological and Life Sciences 8(2): 63–67.
  6. [6] N. I. Azahar, N. M. Mokhtar, and M. A. Arifin, (2020) “Piper betle: a review on its bioactive compounds, pharmacological properties, and extraction process" IOP Conf. Ser. Mater. Sci. Eng. 991(1): 012044.
  7. [7] M. Madhumita, P. Guha, and A. Nag, (2019) “Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity" Ind. Crops Prod. 138(111578): 111578. DOI: 10.1016/j.indcrop.2019.111578.
  8. [8] U. Taukoorah, N. Lall, and F. Mahomoodally, (2016) “Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics" S. Afr. J. Bot. 105: 133–140. DOI: 10.1016/j.sajb.2016.01.006.
  9. [9] S. Basak and P. Guha, (2016) “Betel leaf ( Piper betle L.) Essential Oil Microemulsion: Characterization and Antifungal Activity on Growth, and Apparent Lag Time of Aspergillus flavus in Tomato Paste" Science and Technology 75: 616–623. DOI: 10.1016/j.lwt.2016.10.021.
  10. [10] N. Balasundram, K. Sundram, and S. Samman, (2006) “Phenolic compounds in plants and agri-industrial byproducts: Antioxidant activity, occurrence, and potential uses" Food Chem. 99(1): 191–203. DOI: 10.1016/j.foodchem.2005.07.042.
  11. [11] A. Ali, X. Y. Lim, and P. F. Wahida, (2018) “The fundamental study of antimicrobial activity of Piper betle extract in commercial toothpastes" J. Herb. Med. 14:29–34. DOI: 10.1016/j.hermed.2018.08.001.
  12. [12] L. Nouri, A. Mohammadi Nafchi, and A. A. Karim, (2014) “Phytochemical, antioxidant, antibacterial, and α-amylase inhibitory properties of different extracts from betel leaves" Ind. Crops Prod. 62: 47–52. DOI: 10.1016/j.indcrop.2014.08.015.
  13. [13] M. Anugrahwati, T. Purwaningsih, Rustina, J. A. Manggalarini, N. B. Alnavis, D. N. Wulandari, and H. D. Pranowo, (2016) “Extraction of ethanolic extract of red betel leaves and its cytotoxicity test on HeLa cells" Procedia Eng. 148: 1402–1407. DOI: 10.1016/j.proeng.2016.06.569.
  14. [14] L. Muruganandami, A. Krishna, and J. Reddy, (2017) “Optimization Studies on Extraction of Phytocomponents from Betel Leaves" Resource-Efficient Technologies 3(4): 385–393.
  15. [15] Y. Li, G. K. Skouroumounis, G. M. Elsey, and D. K. Taylor, (2011) “Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols" Food Chemistry 129(2): 570–576. DOI: 10.1016/j.foodchem.2011.04.068.
  16. [16] A. A. Jovanovic, V. B. Ðord¯evic, G. M. Zdunic, D. S. Pljevljakusic, K. P. Savikin, D. M. God¯evac, and B. M. Bugarski, (2017) “Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques" Separation and Purification Technology 179: 369–380. DOI: 10.1016/j.seppur.2017.01.055.
  17. [17] M. Herrero, J. A. Mendiola, A. Cifuentes, and E. Ibáñez, (2010) “Supercritical fluid extraction: Recent advances and applications" Journal of Chromatography a 1217(16): 2495–2511. DOI: 10.1016/j.chroma.2009.12.019.
  18. [18] S. O. Essien, B. Young, and S. Baroutian, (2020) “Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials" Trends Food Sci. Technol. 97: 156–169. DOI: 10.1016/j.tifs.2020.01.014.
  19. [19] F. Chemat and J. Strube. Green extraction of natural products: theory and practice. John Wiley & Sons, 2015. DOI: 10.1002/9783527676828.
  20. [20] J. Zhang, C. Wen, H. Zhang, Y. Duan, and H. Ma, (2020) “Recent advances in the extraction of bioactive compounds with subcritical water: A review" Trends Food Sci. Technol. 95: 183–195. DOI: 10.1016/j.tifs.2019.11.018.
  21. [21] N. Nastic, J. Svarc-Gajic, C. Delerue-Matos, M. F. Barroso, C. Soares, M. M. Moreira, S. Morais, P. Maskovic, V. G. Srcek, I. Slivac, K. Radosevic, and M. Radojkovic, (2018) “Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants" Industrial Crops and Products 111: 579–589. DOI: 10.1016/j.indcrop.2017.11.015.
  22. [22] S. Essien, B. Young, and S. Baroutian, (2020) “Subcritical water extraction for selective recovery of phenolic bioactives from k¯anuka leaves" The Journal of Supercritical Fluids 158: 104721. DOI: 10.1016/j.supflu.2019.104721.
  23. [23] A. M. Silva, A. S. Luís, M. M. Moreira, R. Ferraz, T. Brezo-Borjan, J. Švarc-Gaji´c, P. C. Costa, C. Delerue-Matos, and F. Rodrigues, (2022) “Influence of temperature on the subcritical water extraction of Actinidia arguta leaves: A screening of pro-healthy compounds" Sustainable Chemistry and Pharmacy 25: 100593. DOI: 10.1016/j.scp.2021.100593.
  24. [24] D. Šeremet, S. Joki´c, K. Aladi´c, A. V. Cebin, N. Božac, A. Mandura, and D. Komes, (2021) “Optimization of heat-, microwave-assisted and subcritical water extraction of phenolic compounds from ground ivy (Glechoma hederacea L.) using response surface methodology" Journal of Applied Research on Medicinal and Aromatic Plants 25: 100346.
  25. [25] Y. Wu, Y. Yu, H. Wang, Y. Jiang, Z. Yang, J. Zhou, and L. Zhang, (2021) “Preparation of paeoniflorin from the stems and leaves of Paeonia lactiflora Pall.‘Zhongjiang’through green efficient microwave assisted extraction and subcritical water extraction" Industrial Crops and Products 163: 113332. DOI: 10.1016/j.indcrop.2021.113332.
  26. [26] S. M. Zakaria, S. M. M. Kamal, M. R. Harun, R. Omar, and S. I. Siajam, (2017) “Subcritical water technology for extraction of phenolic compounds from Chlorella sp. Microalgae and assessment on its antioxidant activity" Molecules 22(7): 1105. DOI: 10.3390/molecules22071105.
  27. [27] E. Mlyuka, S. Zhang, L.Wang, Z. Zheng, and J. Chen, (2016) “Characteristics of subcritical water extraction and kinetics of pentacyclic triterpenoids from dry loquat (Eriobotrya japonica) leaves" International Journal of Food Engineering 12(6): 547–555.
  28. [28] Z. Ju and L. R. Howard, (2005) “Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin" Journal of Food Science 70(4): S270–S276. DOI: 10.1111/j .1365- 2621.2005.tb07202.x.
  29. [29] L. Ramos, E. M. Kristenson, and U. T. Brinkman, (2002) “Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis" Journal of Chromatography A 975(1): 3–29. DOI: 10.1016/S0021-9673(02)01336-5.
  30. [30] F. Chemat and M. A. Vian. Alternative solvents for natural products extraction. 381. Springer, 2014.
  31. [31] C. C. Teo, S. N. Tan, J.W. H. Yong, C. S. Hew, and E. S. Ong, (2010) “Pressurized hot water extraction (PHWE)" Journal of Chromatography A 1217(16): 2484–2494. DOI: 10.1016/j.chroma.2009.12.050.
  32. [32] M. Pillot, B. Lebeau, H. Nouali, T. J. Daou, J. Patarin, and A. Ryzhikov, (2019) “High pressure intrusion of water and LiCl aqueous solutions in hydrophobic KIT-6 mesoporous silica: Influence of the grafted group nature" Microporous and Mesoporous Materials 280: 248–255. DOI: 10.1016/j.micromeso.2019.02.006.
  33. [33] S. Cliffe, M. S. Fawer, G. Maier, K. Takata, and G. Ritter, (1994) “Enzyme assays for the phenolic content of natural juices" Journal of Agricultural and Food Chemistry 42(8): 1824–1828. DOI: 10.1021/jf00044a048.
  34. [34] M. S. Blois, (1958) “Antioxidant determinations by the use of a stable free radical" Nature 181(4617): 1199–1200. DOI: 10.1038/1811199a0.
  35. [35] S. Murugesan, D. Ravichandran, D. K. Lakshmanan, G. Ravichandran, V. Arumugam, K. Raju, K. Geetha, and S. Thilagar, (2020) “Evaluation of anti rheumatic activity of Piper betle L.(Betelvine) extract using in silicon, in vitro and in vivo approaches" Bioorganic Chemistry 103: 104227. DOI: 10.1016/j.bioorg.2020.104227.
  36. [36] D. C. Montgomery. Design and analysis of experiments, 8e Wiley E-text reg card. Nashville, TN: JohnWiley & Sons, 2013.
  37. [37] M. Naczk and F. Shahidi, (2004) “Extraction and analysis of phenolics in food" Journal of chromatography A 1054(1-2): 95–111. DOI: 10.1016/j.chroma.2004.08.059.
  38. [38] R. Vijayasankar and K. Ikhlas A, (2012) “An investigation of the vegetative anatomy of Piper sarmentosum, and a comparison with the anatomy of Piper betle (Piperaceae)" American Journal of Plant Sciences 2012:
  39. [39] Ü. Niinemets, (2018) “Storage of defense metabolites in the leaves of Myrtaceae: news of the eggs in different baskets" Tree physiology 38(10): 1445–1450. DOI: 10.1093/treephys/tpy115.
  40. [40] M. Khajenoori, A. H. Asl, and F. Hormozi, (2009) “Proposed models for subcritical water extraction of essential oils" Chinese Journal of Chemical Engineering 17(3): 359–365. DOI: 10.1016/S1004-9541(08)60217-7.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.