REFERENCES
- [1] T. Xu, N. Scafa, L.-P. Xu, S. Zhou, K. Abdullah AlGhanem, S. Mahboob, B. Fugetsu, and X. Zhang, (2016) “Electrochemical hydrogen sulfide biosensors" Analyst 141: 1185–1195. DOI: 10.1039/C5AN02208H.
- [2] M. Asif, A. Aziz, G. Ashraf, Z. Wang, J. Wang, M. Azeem, X. Chen, F. Xiao, and H. Liu, (2018) “FacetInspired Core–Shell Gold Nanoislands on Metal Oxide Octadecahedral Heterostructures: High Sensing Performance toward Sulfide in Biotic Fluids" ACS Applied Materials & Interfaces 10(43): 36675–36685. DOI: 10. 1021/acsami.8b12186.
- [3] J. Kang, Z. Li, C. L. Organ, C.-M. Park, C.-t. Yang, A. Pacheco, D. Wang, D. J. Lefer, and M. Xian, (2016) “pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury" Journal of the American Chemical Society 138(20): 6336–6339. DOI: 10.1021/ jacs.6b01373.
- [4] J. Lee, Y. J. Lee, Y. J. Ahn, S. Choi, and G.-J. Lee, (2018) “A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells" Sensors and Actuators B: Chemical 256: 828–834. DOI: https://doi.org/10.1016/j.snb.2017.10.019.
- [5] M. D. Brown, J. R. Hall, and M. H. Schoenfisch, (2019) “A direct and selective electrochemical hydrogen sulfide sensor" Analytica Chimica Acta 1045: 67–76. DOI: https://doi.org/10.1016/j.aca.2018.08.054.
- [6] Z. Pawlak and A. S. Pawlak, (1999) “Modification of iodometric determination of total and reactive sulfide in environmental samples" Talanta 48(2): 347–353. DOI: https://doi.org/10.1016/S0039-9140(98)00253-7.
- [7] W. Ciesielski and R. Zakrzewski, (2006) “Iodimetric titration of sulfur compounds in alkaline medium" CHEMIA ANALITYCZNA 51: 653–678.
- [8] M. Nishida, T. Sawa, N. Kitajima, K. Ono, H. Inoue, H. Ihara, H. Motohashi, M. Yamamoto, M. Suematsu, H. Kurose, A. van der Vliet, B. A. Freeman, T. Shibata, K. Uchida, Y. Kumagai, and T. Akaike, (2012) “Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration" NATURE CHEMICAL BIOLOGY 8: 714–724. DOI: 10.1038/NCHEMBIO.1018.
- [9] X. Yue, Z. Zhu, M. Zhang, and Z. Ye, (2015) “ReactionBased Turn-on Electrochemiluminescent Sensor with a Ruthenium(II) Complex for Selective Detection of Extracellular Hydrogen Sulfide in Rat Brain" Analytical Chemistry 87(3): 1839–1845. DOI: 10.1021/ac503875j.
- [10] T. P. Mokoena, H. C. Swart, K. T. Hillie, Z. P. Tshabalala, M. Jozela, J. Tshilongo, and D. E. Motaung, (2022) “Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity" Applied Surface Science 571: 151121. DOI: https://doi.org/10.1016/j.apsusc.2021.151121.
- [11] P. P. Liu, X. Liu, X. H. Huo, Y. Tang, J. Xu, and H. Ju, (2017) “TiO2–BiVO4 Heterostructure to Enhance Photoelectrochemical Efficiency for Sensitive Aptasensing" ACS Applied Materials & Interfaces 9(32): 27185– 27192. DOI: 10.1021/acsami.7b07047.
- [12] A. K. Panda, M. Keerthi, R. Sakthivel, U. Dhawan, X. Liu, and R.-J. Chung, (2022) “Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells" Nanomaterials 12(2): DOI: 10.3390/nano12020258.
- [13] Z. Yu, J. Gao, L. Xu, T. Liu, Y. Liu, X. Wang, H. Suo, and C. Zhao, (2020) “Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity" Crystals 10(3): DOI: 10.3390/cryst10030145.
- [14] S. K. Hyun, B. Nam, T. K. Ko, C. Lee, S. B. Choi, and W. I. Lee, (2020) “Optimal Composition of ZnO/WO3 Composite Nanoparticle Gas Sensors" Physica Status Solidi (A) Applications and Materials Science 217(12): DOI: 10.1002/pssa.201900874.
- [15] X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, F. Liu, X. Yan, Y. Sun, F. Liu, K. Shimanoe, and G. Lu, (2020) “High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers" Sensors and Actuators B: Chemical 320: 128292. DOI: https://doi.org/10.1016/j.snb. 2020.128292.
- [16] H. He, C. Zhao, J. Xu, K. Qu, Z. Jiang, Z. Gao, and Y.-Y. Song, (2021) “Exploiting Free-Standing p-CuO/nTiO2 Nanochannels as a Flexible Gas Sensor with High Sensitivity for H2S at Room Temperature" ACS Sensors 6(9): 3387–3397. DOI: 10.1021/acssensors.1c01256.
- [17] S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, C. Wang, F. Qu, W. Cheng, and M. Yang, (2019) “An acetone gas sensor based on nanosized Ptloaded Fe2O3 nanocubes" Sensors and Actuators B: Chemical 290: 59–67. DOI: https://doi.org/10.1016/ j.snb.2019.03.082.
- [18] M. J. Montgomery, N. V. Sugak, K. R. Yang, J. M. Rogers, S. A. Kube, A. C. Ratinov, J. Schroers, V. S. Batista, and L. D. Pfefferle, (2020) “Semiconductor-toconductor transition in 2D copper(ii) oxide nanosheets through surface sulfur-functionalization" Nanoscale 12: 14549–14559. DOI: 10.1039/D0NR02208J.
- [19] Z. Yang, Y. Zhang, L. Zhao, T. Fei, S. Liu, and T. Zhang, (2022) “The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO2 for ppb-level DMMP sensing" Journal of Colloid and Interface Science 608: 2703–2717. DOI: https : //doi.org/10.1016/j.jcis.2021.10.192.
- [20] D. Li, L. Qin, P. Zhao, Y. Zhang, D. Liu, F. Liu, B. Kang, Y. Wang, H. Song, T. Zhang, and G. Lu, (2018) “Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection" Sensors and Actuators B: Chemical 254: 834–841. DOI: https://doi.org/10.1016/j.snb. 2017.06.110.
- [21] P. Zhang, H. Zhu, K. Xue, L. Chen, C. Shi, D. Wang, J. Li, X. Wang, and G. Cui, (2020) “H2S detection at low temperatures by Cu2O/Fe2O3 heterostructure ordered array sensors" RSC Adv. 10: 8332–8339. DOI: 10.1039/ C9RA10054G.
- [22] Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, and Y. Jiang, (2018) “Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles" Sensors and Actuators B: Chemical 259: 269–281. DOI: https://doi.org/10.1016/j.snb.2017.12.052.
- [23] Q. Hu, B. Huang, Y. Li, S. Zhang, Y. Zhang, X. Hua, G. Liu, B. Li, J. Zhou, E. Xie, and Z. Zhang, (2020) “Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/ Ce4+ mole ratio via Pd doping" Sensors and Actuators B: Chemical 307: 127638. DOI: https://doi.org/10.1016/j.snb.2019.127638.
- [24] L. Wang, Z. Lou, R. Zhang, T. Zhou, J. Deng, and T. Zhang, (2016) “Hybrid Co3O4/SnO2 Core–Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas" ACS Applied Materials & Interfaces 8(10): 6539–6545. DOI: 10.1021/acsami.6b00305.
- [25] H. Chen, S. Ao, G.-D. Li, Q. Gao, X. Zou, and C. Wei, (2019) “Enhanced sensing performance to toluene and xylene by constructing NiGa2O4-NiO heterostructures" Sensors and Actuators B: Chemical 282: 331–338. DOI: https://doi.org/10.1016/j.snb.2018.11.072.
- [26] Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, and S. Ruan, (2015) “Enhanced H2S sensing characteristics of CuONiO core-shell microspheres sensors" Sensors and Actuators B: Chemical 209: 515–523. DOI: https://doi. org/10.1016/j.snb.2014.12.010.
- [27] L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang, P. Wang, Y. Xu, S. Gao, H. Zhao, Y. Gao, and L. Huo, (2020) “In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S" Journal of Hazardous Materials 385: 121570. DOI: https://doi.org/10.1016/j.jhazmat.2019.121570.
- [28] G. Cui, P. Zhang, L. Chen, X. Wang, J. Li, C. Shi, and D. Wang, (2017) “Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature" Scientific Reports 7: DOI: 10.1038/srep43887.
- [29] P. Zhang, H. Sun, W. Guan, J. Liang, X. Zhu, J. Zhang, M. Chen, M. Cao, W. Qian, K. Gao, and G. Cui, (2018) “Au@Cu Nanoarrays with Uniform Long-Range Ordered Structure: Synthesis and SERS Applications" Micromachines 9(12): DOI: 10.3390/mi9120678.
- [30] G. Cui, L. Gao, B. Yao, S. Wang, P. Zhang, and M. Zhang, (2013) “Electrochemistry of CuO/In2O3 p–n heterojunction nano/microstructure array with sensitivity to H2 at and below room-temperature" Electrochemistry Communications 30: 42–45. DOI: https://doi.org/10. 1016/j.elecom.2013.02.003.
- [31] F. Bayat and S. Sheibani, (2022) “Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O" Materials Research Bulletin 145: 111561. DOI: https://doi.org/10.1016/j. materresbull.2021.111561.
- [32] N. Wang, Y. Zhou, K. Chen, T. Wang, P. Sun, C. Wang, X. Chuai, S. Zhang, X. Liu, and G. Lu, (2021) “Double shell Cu2O hollow microspheres as sensing material for high performance n-propanol sensor" Sensors and Actuators B: Chemical 333: 129540. DOI: https://doi.org/ 10.1016/j.snb.2021.129540.
- [33] L. Li, J. Wang, J. Xiao, J. Yan, H. Fan, L. Sun, L. Xue, and Z. Tang, (2021) “Time-dependent corrosion behavior of electroless Ni-P coating in H2S/Cl− environment" International Journal of Hydrogen Energy 46(21): 11849–11864. DOI: https : / / doi . org / 10 . 1016 / j . ijhydene.2021.01.053.
- [34] G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, and R. Wang, (2008) “H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathio-nine gamma-lyase" Science 322(5901): 587–590. DOI: 10.1126/science.1162667.
- [35] Z.-h. Yang, D.-p. Zhang, W.-x. Zhang, and M. Chen, (2009) “Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres" Journal of Physics and Chemistry of Solids 70(5): 840–846. DOI: https://doi.org/10.1016/j.jpcs.2009.04.004.
- [36] J. R. Vegelius, K. O. Kvashnina, H. Hollmark, M. Klintenberg, Y. O. Kvashnin, I. L. Soroka, L. Werme, and S. M. Butorin, (2012) “X-ray Spectroscopic Study of Cu2S, CuS, and Copper Films Exposed to Na2S Solutions" The Journal of Physical Chemistry C 116(42): 22293–22300. DOI: 10.1021/jp302390c.