REFERENCES
- [1] A. Akgül, M. Hashemi, M. Inc, and S. Raheem, (2017) “Constructing two powerful methods to solve the Thomas–Fermi equation" Nonlinear Dynamics 87(2): 1435–1444. DOI: 10.1007/s11071-016-3125-2.
- [2] A. Akgül, M. Inc, and M. S. Hashemi, (2017) “Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices" Nonlinear Dynamics 88(4): 2817–2829. DOI: 10.1007/s11071-017-3414-4.
- [3] T. R. Mahapatra and A. Gupta, (2002) “Heat transfer in stagnation-point flow towards a stretching sheet" Heat and Mass Transfer/Waerme- und Stoffuebertragung 38(6): 517–521. DOI: 10.1007/s002310100215.
- [4] M. S. Hashemi, H. Rezazadeh, H. Almusawa, and H. Ahmad, (2021) “A lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet" AIMS Mathematics 6(12):13392–13406. DOI: 10.3934/math.2021775.
- [5] M. Hashemi, (2017) “A novel simple algorithm for solving the magneto-hemodynamic flow in a semi-porous channel" European Journal of Mechanics, B/Fluids 65: 359–367. DOI: 10.1016/j.euromechflu.2017.05.008.
- [6] M. Heydari, Z. Avazzadeh, and N. Hosseinzadeh, (2022) “Haar Wavelet Method for Solving High-Order Differential Equations with Multi-Point Boundary Conditions" Journal of Applied and Computational Mechanics 8(2): 528–544. DOI: 10.22055/jacm.2020.31860.1935.
- [7] Z. Nikooeinejad, M. Heydari, and G. Loghmani, (2021) “Numerical solution of two-point BVPs in infinite horizon optimal control theory: a combined quasilinearization method with exponential Bernstein functions" International Journal of Computer Mathematics 98(11): 2156–2174. DOI: 10.1080/00207160.2021.1876850.
- [8] Z. Nikooeinejad, M. Heydari, and G. Loghmani, (2022) “A numerical iterative method for solving two point BVPs in infinite-horizon nonzero-sum differential games: Economic applications" Mathematics and Computers in Simulation 200: 404–427. DOI: 10.1016/j.matcom.2022.04.022.
- [9] M. Tafakkori–Bafghi, G. Loghmani, and M. Heydari, (2022) “Numerical solution of two-point nonlinear boundary value problems via Legendre–Picard iteration method" Mathematics and Computers in Simulation 199: 133–159. DOI: 10.1016/j.matcom.2022.03.022.
- [10] M. Heydari and G. Loghmani, (2010) “Approximate solution to boundary value problems by the modified vim" Iranian Journal of Science and Technology, TransactionA: Science 34(2): 161–167.
- [11] G. Adomian, (1988) “A review of the decomposition method in applied mathematics" Journal of Mathematical Analysis and Applications 135(2): 501–544. DOI:10.1016/0022-247X(88)90170-9.
- [12] H. Yaghoobi and M. Torabi, (2011) “The application of differential transformation method to nonlinear equations arising in heat transfer" International Communications in Heat and Mass Transfer 38(6): 815–820. DOI:10.1016/j.icheatmasstransfer.2011.03.025.
- [13] A. G. Deacon and S. Osher, (1979) “A finite element method for a boundary value problem of mixed type" SIAM Journal on Numerical Analysis 16(5): 756–778.
- [14] S. Abbasbandy, E. Magyari, and E. Shivanian, (2009) “The homotopy analysis method for multiple solutions of nonlinear boundary value problems" Communications in Nonlinear Science and Numerical Simulation 14(9-10): 3530–3536. DOI: 10.1016/j.cnsns.2009.02.008.
- [15] M. Dehghan, J. Manafian, and A. Saadatmandi, (2010) “The solution of the linear fractional partial differential equations using the homotopy analysis method" Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 65(11): 935–949. DOI: 10.1515/zna-2010-1106.
- [16] M. Dehghan, J. Manafian, and A. Saadatmandi, (2010) “Solving nonlinear fractional partial differential equations using the homotopy analysis method" Numerical Methods for Partial Differential Equations 26(2): 448–479. DOI: 10.1002/num.20460.
- [17] J. Manafian and C. Teymuri sindi, (2018) “An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems" International Journal of Numerical Methods for Heat and Fluid Flow 28(12): 2816–2841. DOI: 10.1108/HFF-08-2017-0300.
- [18] M. Hashemi and S. Abbasbandy, (2017) “A Geometric Approach for Solving Troesch’s Problem" Bulletin of the Malaysian Mathematical Sciences Society 40(1): 97–116. DOI: 10.1007/s40840-015-0260-8.
- [19] M. Hashemi and A. Akgül, (2021) “On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods" Engineering with Computers 37(2):1147–1158. DOI: 10.1007/s00366-019-00876-0.
- [20] M. Hashemi, (2021) “Numerical study of the one-dimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method" Engineering with Computers 37(4): 3397–3407. DOI: 10.1007/s00366-020-01001-2.
- [21] J. Manafian and R. Farshbaf Zinati, (2020) “Application of tan(Φ(ξ)/2) tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model" Proceedings of the National Academy of Sciences India Section A - Physical Sciences 90(1): 67–86. DOI:10.1007/s40010-018-0550-2.
- [22] D. Liu, X. Ju, O. A. Ilhan, J. Manafian, and H. F. Ismael, (2021) “Multi-Waves, Breathers, Periodic and Cross-Kink Solutions to the (2+1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation" Journal of Ocean University of China 20(1): 35–44. DOI: 10.1007/s11802-021-4414-z.
- [23] O. A. Ilhan, J. Manafian, A. Alizadeh, and S. A. Mohammed, (2020) “M lump and interaction between M lump and N stripe for the third-order evolution equation arising in the shallow water" Advances in Difference Equations 2020(1): DOI: 10.1186/s13662-020-02669-y.
- [24] Y. Qian, J. Manafian, S. Y. Mohyaldeen, L. S. Esmail, S. A. Gorovoy, and G. Singh, (2021) “Multiple-order line rogue wave, lump and its interaction, periodic, and cross-kink solutions for the generalized CHKP equation" Propulsion and Power Research 10(3): 277–293. DOI:10.1016/j.jppr.2021.09.002.
- [25] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable time fractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [26] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation" Modern Physics Letters B 33(17): DOI: 10.1142/S0217984919501963.
- [27] M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, and A. Bekir, (2019) “New Optical Soliton Solutions of the Perturbed Fokas-Lenells Equation" Communications in Theoretical Physics 71(11): 1275–1280. DOI: 10.1088/0253-6102/71/11/1275.
- [28] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2016) “Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method" Boletim da Sociedade Paranaense de Matematica 34(2): 213–229. DOI: 10.5269/bspm.v34i2.25501.
- [29] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2015) “Exact solutions for the fractional differential equations by using the first integral method" Nonlinear Engineering 4(1): 15–22. DOI: 10.1515/nleng-2014-0018.
- [30] M. Dehghan and M. Abbaszadeh, (2016) “Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition" Applied Numerical Mathematics 109: 208–234. DOI: 10.1016/j.apnum.2016.07.002.
- [31] M. Dehghan and R. Salehi, (2014) “A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations" Journal of Computational and Applied Mathematics 268: 93–110. DOI: 10.1016/j.cam.2014.02.013.
- [32] E. Shivanian, (2016) “On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations" International Journal for Numerical Methods in Engineering 105(2): 83–110. DOI: 10.1002/nme.4960.
- [33] L. Zhang, D. Huang, and K. Liew, (2015) “An elementfree IMLS-Ritz method for numerical solution of three-dimensional wave equations" Computer Methods in Applied Mechanics and Engineering 297: 116–139. DOI: 10.1016/j.cma.2015.08.018.
- [34] L. Zhang and K. Liew, (2014) “An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method" Applied Mathematics and Computation 249: 333–345. DOI: 10.1016/j.amc.2014.10.033.
- [35] C.-S. Liu and C.-W. Chang, (2018) “Solving nonlinear singularly perturbed problems by fractional order exponential trial functions" Applied Mathematics Letters 83: 219–226. DOI: 10.1016/j.aml.2018.04.008.
- [36] C.-S. Liu, (2018) “Solving singularly perturbed problems by a weak-form integral equation with exponential trial functions" Applied Mathematics and Computation 329: 154–174. DOI: 10.1016/j.amc.2018.02.002.
- [37] M. Jain, S. Sharma, and R. Mohanty, (2016) “High accuracy variable mesh method for nonlinear two-point boundary value problems in divergence form" Applied Mathematics and Computation 273: 885–896. DOI: 10.1016/j.amc.2015.10.030.
- [38] R. Mohanty, (2005) “A family of variable mesh methods for the estimates of (du/dr) and solution of non-linear two point boundary value problems with singularity" Journal of Computational and Applied Mathematics 182(1): 173–187. DOI: 10.1016/j.cam.2004.11.045.
- [39] R. Mohanty, D. Evans, and N. Khosla, (2005) “An O (hk3) non-uniform mesh cubic spline TAGE method for non-linear singular two-point boundary value problems" International Journal of Computer Mathematics 82(9): 1125–1139. DOI: 10.1080/00207160500112977.
- [40] R. Mohanty and N. Khosla, (2006) “Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two-point non-linear boundary value problems" Applied Mathematics and Computation 172(1): 148–162. DOI: 10.1016/j.amc.2005.01.134.
- [41] J. Ahlberg and T. Ito, (1975) “A collocation method for two point boundary value problems" Mathematics of Computation 29(131): 761–776. DOI: 10.1090/S0025-5718-1975-0375785-7.
- [42] K. Raslan, M. Ramadan, and M. Shaalan, (2018) “THEORETICAL AND NUMERICAL STUDIES OF TWO POINT BOUNDARY VALUE PROBLEMS USING TRIGONOMETRIC AND EXPONENTIAL CUBIC B-SPLINES" Journal of the Egyptian Mathematical Society 26(2): 259–268.