Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Sushilata D. MayanglambamThis email address is being protected from spambots. You need JavaScript enabled to view it.1, 2, Rajendra Pamula1, and Shi-Jinn Horng3

1Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Jharkhand-826004, INDIA
2Department of Computer Engineering, Mizoram University, Aizawl, Mizoram-796004, INDIA
3Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei-106335, TAIWAN


 

Received: September 25, 2022
Accepted: December 12, 2022
Publication Date: March 23, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202312_26(12).0003  


In this work, we present an unsupervised machine learning algorithm for outlier detection by integrating Particle Swarm Optimization (PSO) and the K-nearest neighbor (KNN) technique. Initially, the data clustering of the considered datasets was carried out using PSO to obtain optimized clusters. In the optimization process, we have adopted Davies-Bouldin (DB) index as a fitness function. The optimized clusters were pruned to exclude densely packed inliers data. Thereafter, the KNN method was employed to detect outliers present in the datasets. Our proposed algorithm was tested for outlier detection on eight different datasets and compared its performance with PSO+K-means, K-means, Local Outlier Factor (LOF), and Local Distance-based Outlier Factor (LDOF) methods. Our results show that the outlier detection efficiency of the proposed method outperforms than other four techniques. We believe that our proposed technique simple and efficient in finding the outliers in various types of datasets and it could be a promising tool for outlier detection in data mining.


Keywords: Particle Swarm Optimization; Davies-Bouldin Index; K-Nearest Neighbors; Outlier Detection


  1. [1] V. Chandola, A. Banerjee, and V. Kumar, (2009) “Anomaly detection: A survey" ACM Computing Surveys 41(3): DOI: 10.1145/1541880.1541882.
  2. [2] Y. Wang and Y. Li, (2021) “Outlier detection based on weighted neighbourhood information network for mixedvalued datasets" Information Sciences 564: 396–415. DOI: 10.1016/j.ins.2021.02.045.
  3. [3] H.-P. Kriegel, P. Kröger, and A. Zimek, (2010) “Outlier detection techniques" Tutorial at KDD 10: 1–76.
  4. [4] H. Wang, M. J. Bah, and M. Hammad, (2019) “Progress in Outlier Detection Techniques: A Survey" IEEE Access 7: 107964–108000. DOI: 10.1109/ACCESS.2019.2932769.
  5. [5] C. C. Aggarwal. “Supervised outlier detection”. In: Outlier Analysis. Springer, 2017, 219–248.
  6. [6] B. Diallo, J. Hu, T. Li, G. A. Khan, X. Liang, and Y. Zhao, (2021) “Deep embedding clustering based on contractive autoencoder" Neurocomputing 433: 96–107. DOI: 10.1016/j.neucom.2020.12.094.
  7. [7] J. Wang, W. Yuan, and D. Cheng, (2015) “Hybrid genetic-particle swarm algorithm: AN efficient method for fast optimization of atomic clusters" Computational and Theoretical Chemistry 1059: 12–17. DOI: 10.1016/j.comptc.2015.02.003.
  8. [8] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, (2015) “A comprehensive review of swarm optimization algorithms" PLoS ONE 10(5): DOI: 10.1371/journal.pone.0122827.
  9. [9] G. A. Khan, J. Hu, T. Li, B. Diallo, and Y. Zhao, (2022) “Multi-view low rank sparse representation method for three-way clustering" International Journal of Machine Learning and Cybernetics 13(1): 233–253. DOI: 10.1007/s13042-021-01394-6.
  10. [10] T. Nakane, N. Bold, H. Sun, X. Lu, T. Akashi, and C.Zhang, (2020) “Application of evolutionary and swarm optimization in computer vision: a literature survey" IPSJ Transactions on Computer Vision and Applications 12(1): DOI: 10.1186/s41074-020-00065-9.
  11. [11] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of ICNN’95-international conference on neural networks. 4. IEEE. 1995, 1942–1948.
  12. [12] R. O. Ogundokun, J. B. Awotunde, P. Sadiku, E. A. Adeniyi, M. Abiodun, and O. I. Dauda. “An Enhanced Intrusion Detection System using Particle Swarm Optimization Feature Extraction Technique”. In: 193. Cited by: 10; All Open Access, Gold Open Access.2021, 504–512. DOI: 10.1016/j.procs.2021.10.052.
  13. [13] S. Rana, S. Jasola, and R. Kumar, (2011) “A review on particle swarm optimization algorithms and their applications to data clustering" Artificial Intelligence Review 35(3): 211–222.
  14. [14] C. Guan, K. K. F. Yuen, and F. Coenen, (2019) “Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches" Swarm and Evolutionary Computation 44: 876–896. DOI: 10.1016/j.swevo.2018.09.008.
  15. [15] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. “Understanding of internal clustering validation measures”. In: Cited by: 632. 2010, 911–916. DOI: 10.1109/ICDM.2010.35.
  16. [16] M.-D. Yang, Y.-F. Yang, T.-C. Su, and K.-S. Huang, (2014) “An efficient fitness function in genetic algorithm classifier for landuse recognition on satellite images" The Scientific World Journal 2014: DOI: 10.1155/2014/264512.
  17. [17] D. L. Davies and D. W. Bouldin, (1979) “A Cluster Separation Measure" IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1(2): 224–227. DOI: 10.1109/TPAMI.1979.4766909.
  18. [18] M.-D. Yang, Y.-F. Yang, T.-C. Su, and K.-S. Huang, (2014) “An efficient fitness function in genetic algorithm classifier for landuse recognition on satellite images" The Scientific World Journal 2014: DOI: 10.1155/2014/264512.
  19. [19] A. Asma and B. Sadok. “PSO-based dynamic distributed algorithm for automatic task clustering in a robotic swarm”. In: 159. Cited by: 10; All Open Access, Gold Open Access. 2019, 1103–1112. DOI: 10.1016/j.procs.2019.09.279.
  20. [20] L. Dey and S. Chakraborty, (2014) “Canonical pso based-means clustering approach for real datasets" International scholarly research notices 2014:
  21. [21] K. Babaei, Z. Chen, and T. Maul, (2019) “Detecting point outliers using prune-based outlier factor (plof)" arXiv preprint arXiv:1911.01654:
  22. [22] A. G. Gad, (2022) “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review" Archives of Computational Methods in Engineering 29(5): 2531–2561. DOI: 10.1007/s11831-021-09694-4.
  23. [23] S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. Ur Rehman, (2014) “Research on particle swarm optimization based clustering: A systematic review of literature and techniques" Swarm and Evolutionary Computation 17: 1–13. DOI: 10.1016/j.swevo.2014.02.001.
  24. [24] A. A. A. Esmin, R. A. Coelho, and S. Matwin, (2015) “A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data" Artificial Intelligence Review 44(1): 23–45. DOI: 10.1007/s10462-013-9400-4.
  25. [25] E. O. Merza and N. J. Al-Anber. “A Suggested method for detecting outliers based on a particle swarm optimization algorithm”. In: 1897. 1. Cited by:0; All Open Access, Bronze Open Access. 2021. DOI: 10.1088/1742-6596/1897/1/012021.
  26. [26] S. M. H. Bamakan, B. Amiri, M. Mirzabagheri, and Y.Shi. “A New intrusion detection approach using PSO based multiple criteria linear programming”. In: 55. Cited by: 49; All Open Access, Bronze Open Access.2015, 231–237. DOI: 10.1016/j.procs.2015.07.040.
  27. [27] K.-W. Wang and S.-J. Qin. “A hybrid approach for anomaly detection using K-means and PSO”. In: 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016). Atlantis Press.2016, 821–826.
  28. [28] A.Wahid and A. C. S. Rao, (2019) “A Distance-Based Outlier Detection Using Particle Swarm Optimization Technique" Lecture Notes in Networks and Systems 40: 633–643. DOI: 10.1007/978-981-13-0586-3_62.
  29. [29] L. Guo, (2020) “Research on anomaly detection in massive multimedia data transmission network based on improved PSO algorithm" IEEE Access 8: 95368–95377. DOI: 10.1109/ACCESS.2020.2994578.
  30. [30] A. Karami and M. Guerrero-Zapata, (2015) “A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks" Neurocomputing 149(PC): 1253–1269. DOI: 10.1016/j.neucom.2014.08.070.
  31. [31] R. M. Alguliyev, R. M. Aliguliyev, and F. J. Abdullayeva, (2019) “PSO+K-means algorithm for anomaly detection in big data" Statistics, Optimization and Information Computing 7(2): 348–359. DOI: 10.19139/soic.v7i2.623.
  32. [32] M. Lotfi Shahreza, D. Moazzami, B. Moshiri, and M. Delavar, (2011) “Anomaly detection using a selforganizing map and particle swarm optimization" Scientia Iranica 18(6): 1460–1468. DOI: 10.1016/j.scient.2011.08.025.
  33. [33] A. Mekhmoukh and K. Mokrani, (2015) “Improved Fuzzy C-Means based Particle Swarm Optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation" Computer Methods and Programs in Biomedicine 122(2): 266–281. DOI: 10.1016/j.cmpb.2015.08.001.
  34. [34] A. A. d. M. Meneses, M. D. Machado, and R. Schirru, (2009) “Particle Swarm Optimization applied to the nuclear reload problem of a Pressurized Water Reactor" Progress in Nuclear Energy 51(2): 319–326. DOI: 10.1016/j.pnucene.2008.07.002.
  35. [35] Y. Zhang, S. Wang, and G. Ji, (2015) “A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications" Mathematical Problems in Engineering 2015: DOI: 10.1155/2015/931256.
  36. [36] X. Tao, X. Li, W. Chen, T. Liang, Y. Li, J. Guo, and L. Qi, (2021) “Self-Adaptive two roles hybrid learning strategies-based particle swarm optimization" Information Sciences 578: 457–481. DOI: 10.1016/j.ins.2021.07.008.
  37. [37] Z.-G. Liu, X.-H. Ji, Y. Yang, and H.-T. Cheng, (2021) “Multi-technique diversity-based particle-swarm optimization" Information Sciences 577: 298–323. DOI: 10.1016/j.ins.2021.07.006.
  38. [38] D. Van Der Merwe and A. Engelbrecht. “Data clustering using particle swarm optimization”. In: 1. Cited by: 657. 2003, 215–220. DOI: 10.1109/CEC.2003.1299577.
  39. [39] B. Xue, M. Zhang, andW. N. Browne, (2013) “Particle swarm optimization for feature selection in classification: A multi-objective approach" IEEE Transactions on Cybernetics 43(6): 1656–1671. DOI: 10.1109/TSMCB.2012.2227469.
  40. [40] R. Jamous, H. ALRahhal, and M. El-Darieby, (2021) “A new ann-particle swarm optimization with center of gravity (ann-psocog) prediction model for the stock market under the effect of covid-19" Scientific Programming 2021:
  41. [41] S. Sarkar, A. Roy, and B. S. Purkayastha, (2013) “Application of particle swarm optimization in data clustering: A survey" International Journal of Computer Applications 65(25):
  42. [42] L. Zajmi, F. Y. Ahmed, and A. A. Jaharadak, (2018) “Concepts, Methods, and Performances of Particle Swarm Optimization, Backpropagation, and Neural Networks" Applied Computational Intelligence and Soft Computing 2018: DOI: 10.1155/2018/9547212.
  43. [43] J. C. Bansal, P. K. Singh, and N. R. Pal. Evolutionary and swarm intelligence algorithms. 779. Springer, 2019.
  44. [44] Mostapha Kalami Heris Evolutionary Data Clustering in MATLAB. ttps : / / yarpiz . com / 64 / ypml101 - evolutionary-clustering. accessed June 2021.
  45. [45] S. Zhang, X. Li, M. Zong, X. Zhu, and R.Wang, (2018) “Efficient kNN classification with different numbers of nearest neighbors" IEEE Transactions on Neural Networks and Learning Systems 29(5): 1774–1785. DOI: 10.1109/TNNLS.2017.2673241.
  46. [46] R. Pamula, J. K. Deka, and S. Nandi. “An outlier detection method based on clustering”. In: Cited by: 55. 2011, 253–256. DOI: 10.1109/EAIT.2011.25.
  47. [47] D. L. Davies and D. W. Bouldin, (1979) “A Cluster Separation Measure" IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1(2): 224–227. DOI: 10.1109/TPAMI.1979.4766909.
  48. [48] P. Cortez and A. de Jesus Raimundo Morais. A data mining approach to predict forest fires using meteorological data. http://www3.dsi.uminho.pt/pcortez/fires.pdf. 2007.
  49. [49] D. Dua and C. Graff. Ionosphere Dataset,UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml. 2017.
  50. [50] S. Rayana and L. Akoglu, (2016) “Less is more: Building selective anomaly ensembles" ACM Transactions on Knowledge Discovery from Data 10(4): DOI: 10.1145/2890508.
  51. [51] N. Fachada, M. A. Figueiredo, V. V. Lopes, R. C. Martins, and A. C. Rosa, (2014) “Spectrometric differentiation of yeast strains using minimum volume increase and minimum direction change clustering criteria" Pattern
    Recognition Letters 45(1): 55–61. DOI: 10.1016/j.patrec.2014.03.008.
  52. [52] J. Kools. 6 functions for generating artificial datasets. https : / /www. mathworks . com / matlabcentral /fileexchange/41459 - 6- functions - for - generating -artificial-datasets. accessed on June 2021. 2021.
  53. [53] G. K. Patel, V. K. Dabhi, and H. B. Prajapati, (2017) “Clustering Using a Combination of Particle Swarm Optimization and K-means" Journal of Intelligent Systems 26(3): 457–469. DOI: 10.1515/jisys-2015-0099.
  54. [54] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, (2002) “An efficient k-means clustering algorithms: Analysis and implementation" IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7): 881–892. DOI: 10.1109/TPAMI.2002.1017616.
  55. [55] M. M. Breuniq, H.-P. Kriegel, R. T. Ng, and J. Sander, (2000) “LOF: Identifying density-based local outliers" SIGMOD Record (ACM Special Interest Group on Management of Data) 29(2): 93–104. DOI: 10.1145/335191.335388.
  56. [56] K. Zhang, M. Hutter, and H. Jin, (2009) “A new local distance-based outlier detection approach for scattered realworld data" Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
    and Lecture Notes in Bioinformatics) 5476 LNAI: 813–822. DOI: 10.1007/978-3-642-01307-2_84.
  57. [57] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, (2002) “An efficient k-means clustering algorithm: Analysis and implementation" IEEE transactions on pattern analysis and machine intelligence 24(7): 881–892.
  58. [58] A. Asuncion and D. Newman. Forest Fire Dataset, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml. 2007.
  59. [59] W. H. Wolberg, W. N. Street, and O. L. Mangasarian. Breast cancer Wisconsin (diagnostic) data set, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Science. http://archive.ics.uci.edu/ml. 1992.
  60. [60] K. Nakai and M. Kanehisa, (1991) “Expert system for predicting protein localization sites in gram-negative bacteria" Proteins: Structure, Function, and Bioinformatics 11(2): 95–110.
  61. [61] K. Nakai and M. Kanehisa, (1992) “A knowledge base for predicting protein localization sites in eukaryotic cells" Genomics 14(4): 897–911. DOI: 10.1016/S0888-7543(05)80111-9.
  62. [62] C. C. Aggarwal and S. Sathe, (2015) “Theoretical foundations and algorithms for outlier ensembles" Acm sigkdd explorations newsletter 17(1): 24–47.
  63. [63] J. Wu and J. Wu, (2012) “Cluster analysis and K-means clustering: an introduction" Advances in K-Means clustering: A data mining thinking: 1–16.
  64. [64] G. Gan, C. Ma, and J. Wu. Data clustering: theory, algorithms, and applications. SIAM, 2020.


Latest Articles