Chenxin LiThis email address is being protected from spambots. You need JavaScript enabled to view it.,Erlin Liu1 School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou,730000,China
Received:
November 14, 2022
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Accepted:
April 14, 2023
Publication Date:
June 14, 2023
Download Citation:
||https://doi.org/10.6180/jase.202401_27(1).0010
Aiming at the two-vector model predictive current control(TV-MPCC)strategy of permanent magnet synchronous motor (PMSM), in a sampling period, can merely change the amplitude magnitude by adjusting the action time of the zero vector, resulting in the synthesized voltage vector direction can only be fixed in the
direction of the six basic voltage vectors and the current fluctuations generated by the problem. This paper
proposes an optimized three-vector model predictive current control (OTV-MPCC) method, which first finds the
desired voltage vector and then finds the position angle of the desired vector through the inverse derivation of
the formula and determines the sector in which it is located. The two fundamental vectors are selected and the zero vector at the boundary of the sector as the three voltage vectors requires for the model predictive control.
Moreover, the time of each vector action is calculated by using the dead-beat control method, and the zero
vector is selected by the switching frequency and switching minimum principle, which makes the algorithm computation significantly reduced. The simulation experimental results show that the proposed optimized
three-vector model based on the predictive current control strategy can effectively decline the straight-axis and cross-axis current pulsations and enhance the stability of the system.
Keywords:
Two-vector model predictive current control; Permanent magnet synchronous motor; current fluctuations; Optimized three-vector model predictive current control; Dead-beat control
tynxb.2019-0753.
Predictive Control Method for 2-Level Voltage Source Inverters: Theoretical Analysis, Experimental Verification and Extension" Transactions of China Electrotechnical Society 36(01): 39–49. DOI: 10.19595/j.cnki.1000-6753.tces.200309.
Permanent Magnet Synchronous Motors" Transactions of China Electrotechnical Society 29(S1): 73–79. DOI: 10.19595/j.cnki.1000-6753.tces.2014.s1.011.
Control of Permanent Magnet Synchronous Motor Based on Duty-cycle Modulation" Proceedings of the CSEE 40(10): 3319–3328. DOI10.13334/j.0258-8013.pcsee.190897.
Magnet Synchronous Motor" Transactions of China Electrotechnical Society 32(20): 222–230. DOI: 10.19595/j.cnki.1000-6753.tces.160308.
Permanent Magnet Synchronous Motor" Proceedings of the CSEE 38(S1): 243–249. DOI: 10.13334/j.0258-8013.pcsee.181100.