Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Nongnuch Saengsura, Saowanit SukparungseeThis email address is being protected from spambots. You need JavaScript enabled to view it., and Yupaporn Areepong

Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800 Thailand


 

 

Received: September 3, 2023
Accepted: December 10, 2023
Publication Date: January 10, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202410_27(10).0014  


Control charts are common methods for monitoring effectiveness. The mixed cumulative sum-double moving average (MCD) chart is a parametric control chart, and it is a helpful tool for detecting minute changes in the process mean. The Tukey control chart (TCC) is a nonparametric chart for a process without a distribution. This research aims to develop a new mixed control scheme, between the MCD chart and TCC, named Tukey cumulative sum-double moving average chart (MCD-TCC) to detect changes in process mean with symmetrical and asymmetrical distributions. The effectiveness of the MCD-TCC is evaluated using Monte Carlo (MC) simulation and compared to the cumulative sum (CUSUM), double moving average (DMA), MCD, mixed cumulative sum-Tukey (CUSUM-TCC), and mixed Tukey-double moving average (TCC-DMA) charts using average run length (ARL), and median run length (MRL) as the criteria for efficiency measurement. The study’s findings for the process with asymmetrical distributions demonstrated that, for instances of minor shifts (δ < 0.25), the MCD-TCC performed better than the CUSUM, DMA, MCD, CUSUM-TCC, and TCC-DMA charts. In other shifts, TCC-DMA control charts perform better than other charts. Finally, a real data set is offered to demonstrate the application of the MCD-TCC.


Keywords: Average run length; control chart; CUSUM chart; DMA chart; MCD-TCC chart; median run length; TCC


  1. [1] W. A. Shewhart. Economic control of quality manufactured product. D. Van Nostrand Company, Inc., 1931.
  2. [2] E. S. Page, (1954) “Continuous inspection scheme" Biometrika 41(1–2): 100–115.
  3. [3] M. B. C. Khoo, (2004) “A moving average control chart for monitoring the fraction non-conforming" Quality and Reliability Engineering International 20(6): 617–635.
  4. [4] M. B. C. Khoo and V. H. Wong, (2008) “A moving average control chart for monitoring the fraction non-conforming" Communications in StatisticsSimulation and Computation 37(8): 1696–1708. DOI: 10.1002/qre.576.
  5. [5] B. Zaman, M. Riaz, N. Abbas, and R. J. M. M. Does, (2015) “Mixed cumulative sum-exponentially weighted moving average control charts: an efficient way of monitoring process location" Quality and Reliability Engineering International 31(8): 1407–1421. DOI: 10.1002/qre.1678.
  6. [6] J. O. Ajadi and M. Raiz, (2017) “Mixed multivariate EWMA-CUSUM control chart for an improved process monitoring" Communications in Statistics-Theory and Methods 46(14): 69803–6993. DOI: 10.1080/03610926.2016.1139132.
  7. [7] M. Aslam, W. Gui, N. Khan, and C. H. Jun, (2017) “Double moving average-EWMA control chart for exponentially distributed quality" Communications in Statistics-Simulation and Computation 46(9): 7351–7364. DOI: 10.1080/03610918.2016.1236955.
  8. [8] N. Abbas, I. A. Raji, M. Riaz, and K. A. L. Ghamdi, (2018) “On designing mixed EWMA Dual-CUSUM chart with applications in Petro-Chemical industry" IEEE Access 6: 78931–78946. DOI: 10.1109/ACCESS.2018.2885598.
  9. [9] C. C. Alves, A. C. Konrath, E. Henning, O. M. F. C. Walter, E. P. Paladini, T. A. Oliveira, and A. Oliveira, (2019) “The mixed CUSUM-EWMA (MCE) control chart as a new alternative in the monitoring of a manufacturing process" Brazillian Journal of Operations and Production Management 6(1): 1–13. DOI: 10.14488/BJOPM.2019.v16.n1.a1.
  10. [10] S. Hussain, X. Wang, S. Ahmad, and M. Riaz, (2020) “On a class of mixed EWMA-CUSUM median control charts for process monitoring" Quality and Reliability Engineering International 36(3): 1–13. DOI: 10.1002/qre.2608.
  11. [11] M. Abid, S. Mei, H. Z. Nazir, and M. Riaz, (2021) “A mixed HWMA-CUSUM mean chart with an application to manufacturing process" Quality and Reliability Engineering International 37(2): 618–631. DOI: 10.1002/qre.2752.
  12. [12] N. Saengsura, S. Sukparungsee, and Y. Areepong, (2022) “Mixed moving average-cumulative sum control chart for monitoring parameter change" Intelligent Automation and Soft Computing 31(1): 635–647. DOI: 10.32604/iasc.2022.019997.
  13. [13] N. Saengsura, S. Sukparungsee, and Y. Areepong, (2023) “New designing detecting mean shifts with symmetrically and asymmetrically distributed observations" Applied Science and Engineering Progres 16(4): 125–136.
  14. [14] F. Alemi, (2004) “Tukey’s control chart" Quality Management in Health Care 13(4): 216–221.
  15. [15] S. Sukparungsee, (2012) “Robustness of Tukey’s control chart in detecting a changes of parameter of skew distributions" International Journal of Applied Physics and Mathematics 2(5): 379–382.
  16. [16] Q. U. A. Khaliq, M. Riaz, and F. Alemi, (2015) “Performance of Tukey’s and individual/moving range control charts" Quality and Reliability Engineering International 31(6): 1063–1077. DOI: 10.1002/qre.1664.
  17. [17] Q. U. A. Khaliq and M. Riaz, (2015) “Robust Tukey–CUSUM control chart for process monitoring" Quality and Reliability Engineering International 32(3): 933–948. DOI: 10.1002/qre.1804.
  18. [18] M. Riaz, Q. U. A. Khaliq, and S. Gul, (2017) “Mixed Tukey EWMA-CUSUM control chart and its applications" Quality Technology and Quantitative Management 14(4): 378–411. DOI: 10.1080/16843703.2017.1304034.
  19. [19] J. C. Malela-Majika and E. E. Rapool, (2017) “Distribution-free mixed cumulative sum-exponentially weighted moving average control charts for detecting mean shifts" Quality and Reliability Engineering International 33(8): 1983–2002. DOI: 10.1002/qre.1678.
  20. [20] P. Mongkoltawat, S. Sukparungsee, and Y. Areepong, (2017) “Exponentially weighted moving average-Tukey’s control charts for moving range and range" The Journal of KMUTNB 27(4): 1–12.
  21. [21] M. O. A. Abu-Shawiesh, M. Riaz, and Q. U. A. Khaliq, (2020) “MTSD-TCC: A robust alternative to Tukey’s control chart (TCC) based on the modified trimmed standard deviation (MTSD)" Mathematics and Statistics 8(3): 262–277.
  22. [22] R. Thitisoowaranon, S. Sukparungsee, and Y. Areepong, (2019) “A mixed cumulative sum-Tukey’s control chart for detecting process dispersion" The Journal of KMUTNB 29(3): 507–517.
  23. [23] S. Phantu and S. Sukparungsee, (2020) “A mixed double exponentially weighted moving average-Tukey’s control chart for monitoring of parameter change" Thailand Statistician 18(4): 392–402.
  24. [24] R. Taboran, S. Sukparungsee, and Y. Areepong, (2020) “A new nonparametric Tukey MA-EWMA control charts for detecting mean shifts" IEEE Access 8: 207249– 207259. DOI: 10.1109/ACCESS.2020.3037293.
  25. [25] R. Taboran, S. Sukparungsee, and Y. Areepong, (2021) “Design of a new Tukey MA-DEWMA control chart to monitor process and its applications" IEEE Access 9: 102746–102757. DOI: 10.1109/ACCESS.2021.3098172.
  26. [26] S. Sukparungsee, Y. A. N. Saengsura, and S. Phantu, (2021) “Mixed Tukey-Double Moving Average for Monitoring of Process Mean" Thailand Statistician 19(4): 855–865.
  27. [27] N. Saengsura, S. Sukparungsee, and Y. Areepong, (2021) Thailand Statistician 21(1): 125–136.
  28. [28] Q. U. A. Khaliq, M. Riaz, and S. Ahmad, (2016) “On designing a new Tukey-EWMA control chart for process monitoring" The International Journal of Advanced Manufacturing Technology 82(1): 1–23. DOI: 10.1007/s00170-015-7289-6.
  29. [29] M. Riaz, Q. U. A. Khaliq, M. Abid, and I. A. Arshad, (2022) “On designing efficient sequential schemes to monitor non-normal processes" Quality and Reliability Engineering International 38(1): 615–634. DOI: 10.1002/qre.3005.
  30. [30] S. A. Abbasi, Q. U. A. Khaliq, M. H. Omar, and M. Riaz, (2020) “On designing a sequential based EWMA structure for efficient process monitoring" Journal of Taibah University for Science 14(1): 177–191. DOI: 10.1080/16583655.2020.1712011.
  31. [31] S. Knoth, N. A. Saleh, M. A. Mahmoud, W. H. Woodall, and V. G. Tercero-Gmez, (2023) “A critique of a variety of “Memory-Based” process monitoring methods" Journal of Quality Technology 25(1): 18–42. DOI: 10.1080/00224065.2022.2034487.
  32. [32] D. C. Montgomery. Introduction to statistical quality control. 6th ed. John Wiley and Sons, Inc, 2009.
  33. [33] R. Taboran, S. Sukparungsee, and Y. Areepong. “Moving average-Tukey’s control chart for monitoring of parameter change”. In: Proc. Universal Academic Cluster Int. March Conf. Bangkok. 2018, 125–132.
  34. [34] R. Sunthornwat, Y. Areepong, and S. Sukparungsee, (2018) “Average run length with a practical investigation of estimating parameters of the EWMA control chart on the long memory AFRIMA process" Thailand Statistician 16(2): 190–202.
  35. [35] S. Sukparungsee, Y. Areepong, and R. Taboran, (2018) “Exponentially weighted moving average-moving average charts for monitoring the process mean" PLOS ONE 15(2): DOI: 10.1371/journal.pone.0228208.
  36. [36] F. F. Gan, (1994) “An optimal design of cumulative sum control charts based on median run length" Communications in Statistics - Simulation and Computation 23(2): 485–503. DOI: 10.1080/03610919408813183.
  37. [37] An optimal design of cumulative sum control charts based on median run length. 2014.
  38. [38] W. S. Chin and M. B. C. Khoo, (2012) “A study of the median run length (MRL) performance of the EWMA t chart for the mean" South African of Industrial Engineering 23(3): 42–55. DOI: 10.10520/EJC-69b849ca6.
  39. [39] Y. L. Qiao, X. L. Hu, J. S. Sun, and Q. Xu, (2021) “Optimal design of one-sided exponential cumulative sum charts with known and estimated parameters based on the median run length" Quality and Reliability Engineering International 37(1): 123–144. DOI: 10.1002/qre.2725.
  40. [40] W. L. Teoh, M. B. C. Khoo, and S. Y. Teh, (2013) “Optimal designs of the median run length based double sampling xbar chart for minimizing the average sampling size" PLOS ONE 8(7): DOI: 10.1371/journal.pone.0068580.
  41. [41] D. K. Bhaumik, K. Kapur, and R. D. Gibbons, (2009) “Testing parameters of a gamma distribution for small samples" Technometrics 51(3): 326–334. DOI: 10.1198/tech.2009.07038.


Latest Articles