Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Supanut Thiebkhun1,#, Sumeth Wongkiew2,3,#, Tharinee Saleepochn4, and Pongsak (Lek) Noophan1This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand

2Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

3Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand

4Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

#The authors contributed equally to this work


 

 

Received: January 15, 2024
Accepted: February 19, 2024
Publication Date: February 27, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202412_27(12).0011  


Amid food, nutrient, and wastewater crises, this study investigated struvite (NH4MgPO4 ·6H2O) derived from domestic wastewater as a sustainable solution, utilizing it in hydroponic systems for lettuce production. The research synthesized and compared struvite from both synthetic and real domestic wastewater and assessed its nutrient uptake efficiency across three phases: I) hydroponics without struvite, II) hydroponics with synthetic struvite, and III) hydroponics with struvite from domestic wastewater. Results reveal that struvite from domestic wastewater exhibited a structure similar to synthetic struvite, with an efficient phosphate removal efficiency (90.3%) but without ammonium removal from urine due to the hydrolysis of urea in the wastewater. In Phase I, hydroponic solutions without struvite showed low phosphorus concentrations (1.5 and 4.0 mgP/L). Adding 0.5 g and 1.0 g of chemically synthesized struvite per liter in Phase II significantly increased phosphate levels to 43.9 and 78.9 mgP/L, respectively, demonstrating the effectiveness of struvite in enhancing phosphorus availability. Phase III revealed that struvite from real domestic wastewater released significantly more phosphate (67.2 mgP/L) compared to synthetic struvite (35.7 mgP/L), suggesting the potential of using domestic wastewaterderived struvite for enhanced nutrient supplementation. The supplementation of struvite in hydroponics increased phosphate but not nitrate levels in the hydroponic water. Hydroponic systems supplemented with synthetic and domestic wastewater struvite yielded 1,350.0 and 1,265.3 grams per system (12 heads) respectively, surpassing yields from systems without struvite. Phosphorus and nitrogen use efficiencies for synthetic struvite were 1.8% and 33.9%, and for domestic wastewater struvite 1.9% and 26.0%, respectively. Additionally, struvite sources affected microbial communities, with synthetic struvite favoring nitrifying bacteria (e.g., Nitrospira, Nitrobacter) and domestic struvite promoting microbes associated with organic nutrients (e.g., Altererythrobacter, Litorilinea, Armatimonas). These findings highlight the potential of using domestic wastewater-derived struvite in hydroponics as a sustainable nutrient recovery method, contributing to sustainable agriculture and the circular economy.


Keywords: Bioponic; Domestic wastewater; Microbial community; Nitrogen recovery; Phosphorus recovery; Struvite


  1. [1] D. Wallerstein, (2020) “Food-Energy-Water (FEW) Nexus: Rearchitecting the Planet to Accommodate 10 Billion Humans by 2050" Resources, Conservation and Recycling 155: 104658. DOI: doi.org/10.1016/j.resconrec.2019.104658.
  2. [2] United Nations Environment Programme. Food Waste Index Report 2021. Nairobi, Kenya. 2021.
  3. [3] N. Alexandratos and J. Bruinsma. World Agriculture Towards 2030/2050. Rome, Italy. 2012.
  4. [4] E. Nabil, F. Ghobrial, and M. Roushdi, (2023) “Integrated Removal of Carbon and Nitrogen from Wastewater Using Two-Step Cascade Technology" Journal of Applied Science and Engineering 26: 1785–1790. DOI: doi.org/10.6180/jase.202312_26(12).0010.
  5. [5] S. Wongkiew, T. Koottatep, C. Polprasert, P. Prombutara, W. Jinsart, and S. K. Khanal, (2021) “Bioponic System for Nitrogen and Phosphorus Recovery from Chicken Manure: Evaluation of Manure Loading and Microbial Communities" Waste Management 125: 67–76. DOI: doi.org/10.1016/j.wasman.2021.02.014.
  6. [6] D. Kiani, Y. Sheng, B. Lu, D. Barauskas, K. Honer, Z. Jiang, and J. Baltrusaitis, (2019) “Transient Struvite Formation during Stoichiometric (1:1) NH4+ and PO43– Adsorption/Reaction on Magnesium Oxide (MgO) Particles" ACS Sustainable Chemistry Engineering 7: 1545–1556. DOI: doi.org/10.1021/acssuschemeng.8b05318.
  7. [7] M. Carreras-Sempere, R. Caceres, M. Viñas, and C. Biel, (2021) “Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum Esculentum) Production for Boosting Circular and Sustainable Horticulture" Agriculture 11: 1063. DOI: doi.org/10.3390/agriculture11111063.
  8. [8] D. H. Phu, L. T. Ngoc, L. N. Q. Tu, D. T. M. Hieu, N. Q. Long, and M.-V. Le, (2021) “Simultaneous Recovery of Phosphorus and Nitrogen from Inorganic Fertilizer Wastewater" Journal of Applied Science and Engineering 25: 773–784. DOI: doi.org/10.6180/jase.202208_25(4).0013.
  9. [9] N. Sarigul, F. Korkmaz, and ˙I. Kurultak, (2019) “A New Artificial Urine Protocol to Better Imitate Human Urine" Scientific Reports 9: 20159. DOI: doi.org/10.1038/s41598-019-56693-4.
  10. [10] V. Arcas-Pilz, M. Rufí-Salis, F. Parada, A. Petit-Boix, X. Gabarrell, and G. Villalba, (2021) “Recovered Phosphorus for a More Resilient Urban Agriculture: Assessment of the Fertilizer Potential of Struvite in Hydroponics" Science of The Total Environment 799: 149424. DOI: doi.org/10.1016/j.scitotenv.2021.149424.
  11. [11] S. Wongkiew, Z. Hu, J. W. Lee, K. Chandran, H. T. Nhan, K. R. Marcelino, and S. K. Khanal, (2021) “Nitrogen Recovery via Aquaponics–Bioponics: Engineering Considerations and Perspectives" ACS EST Engineering 1: 326–339. DOI: doi.org/10.1021/acsestengg.0c00196.
  12. [12] V. Arcas-Pilz, F. Parada, M. Rufí-Salis, G. Stringari, R. González, G. Villalba, and X. Gabarrell, (2022) “Extended Use and Optimization of Struvite in Hydroponic Cultivation Systems" Resources, Conservation and Recycling 179: 106130. DOI: doi.org/10.1016/j.resconrec.2021.106130.
  13. [13] H. Singh, B. Dunn, and M. Payton, (2019) “Hydroponic PH Modifiers Affect Plant Growth and Nutrient Content in Leafy Greens" Journal of Horticultural Research 27: 31–36. DOI: doi.org/10.2478/johr-2019-0004.
  14. [14] T. Van Gerrewey, C. El-Nakhel, S. De Pascale, J. De Paepe, P. Clauwaert, F.-M. Kerckhof, N. Boon, and D. Geelen, (2021) “Root-Associated Bacterial Community Shifts in Hydroponic Lettuce Cultured with UrineDerived Fertilizer" Microorganisms 9: 1326. DOI: doi.org/10.3390/microorganisms9061326.
  15. [15] S. M. Awad, A. E. Nasralla, E. A. Osman, Y. A. Srour, and I. Mohamed, (2023) “Mutual Effect of Organic, Inorganic and Bio-Fertilizers on Sudan Grass Grown in Sandy Soil" Journal of Applied Science and Engineering 27: 2289–2299. DOI: doi.org/10.6180/jase.202404_27(04).0001.
  16. [16] B. J. Enagbonma, A. E. Fadiji, A. S. Ayangbenro, and O. O. Babalola, (2023) “Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture" Microorganisms 11: 2003. DOI: doi.org/10.3390/microorganisms11082003.
  17. [17] A. A. Robles-Aguilar, O. Grunert, E. HernandezSanabria, M. Mysara, E. Meers, N. Boon, and N. D. Jablonowski, (2020) “Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics and Cultivation of Lupine (Lupinus Angustifolius)" Frontiers in Plant Science 11: DOI: doi.org/10.3389/fpls.2020.572741.
  18. [18] F. Bastida, N. Jehmlich, J. Martínez-Navarro, V. Bayona, C. García, and J. Moreno, (2019) “The Effects of Struvite and Sewage Sludge on Plant Yield and the Microbial Community of a Semiarid Mediterranean Soil" Geoderma 337: 1051–1057. DOI: doi.org/10.1016/j.geoderma.2018.10.046.
  19. [19] I. Stratful, M. Scrimshaw, and J. Lester, (2001) “Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate" Water Research 35: 4191–4199. DOI: doi.org/10.1016/S0043-1354(01)00143-9.
  20. [20] E. Tilley, J. Atwater, and D. Mavinic, (2008) “Recovery of Struvite from Stored Human Urine" Environmental Technology 29: 797–806. DOI: doi.org/10.1080/09593330801987129.
  21. [21] P. van Jaarsveld, M. Faber, I. van Heerden, F. Wenhold, W. Jansen van Rensburg, and W. van Averbeke, (2014) “Nutrient Content of Eight African Leafy Vegetables and Their Potential Contribution to Dietary Reference Intakes" Journal of Food Composition and Analysis 33: 77–84. DOI: doi.org/10.1016/j.jfca.2013.11.003.
  22. [22] APHA. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington DC, 2005.
  23. [23] AOAC. Official Methods of Analysis of AOAC International. Ed. by G. W. Latimer Jr. 21st ed. Maryland: AOAC International, 2019.
  24. [24] B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes, (2016) “DADA2: High-Resolution Sample Inference from Illumina Amplicon Data" Nature Methods 13: 581–583. DOI: doi.org/10.1038/nmeth.3869.
  25. [25] J. R. Cole, Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje, (2014) “Ribosomal Database Project: Data and Tools for High Throughput RRNA Analysis" Nucleic Acids Research 42: D633–D642. DOI: doi.org/10.1093/nar/gkt1244.
  26. [26] Ø. Hammer, D. A. Harper, and P. D. Ryan. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 9. 2001.
  27. [27] D. H. Parks, G. W. Tyson, P. Hugenholtz, and R. G. Beiko, (2014) “STAMP: Statistical Analysis of Taxonomic and Functional Profiles" Bioinformatics 30: 3123–3124. DOI: doi.org/10.1093/bioinformatics/btu494.
  28. [28] I. Rech, P. J. Withers, D. L. Jones, and P. S. Pavinato, (2018) “Solubility, Diffusion and Crop Uptake of Phosphorus in Three Different Struvites" Sustainability 11: 134. DOI: doi.org/10.3390/su11010134.
  29. [29] H. Ray, D. Saetta, and T. H. Boyer, (2018) “Characterization of Urea Hydrolysis in Fresh Human Urine and Inhibition by Chemical Addition" Environmental Science: Water Research Technology 4: 87–98. DOI: doi.org/10.1039/C7EW00271H.
  30. [30] H. Kirchmann and S. Pettersson, (1995) “Human Urine - Chemical Composition and Fertilizer Use Efficiency" Fertilizer Research 40: 149–154. DOI: doi.org/10.1007/BF00750100.
  31. [31] X. Liu, G. Wen, Z. Hu, and J. Wang, (2018) “Coupling Effects of PH and Mg/P Ratio on P Recovery from Anaerobic Digester Supernatant by Struvite Formation" Journal of Cleaner Production 198: 633–641. DOI: doi.org/10.1016/j.jclepro.2018.07.073.
  32. [32] T. Yang and H.-J. Kim, (2020) “Comparisons of Nitrogen and Phosphorus Mass Balance for Tomato-, Basil-, and Lettuce-Based Aquaponic and Hydroponic Systems" Journal of Cleaner Production 274: 122619. DOI: doi.org/10.1016/j.jclepro.2020.122619.
  33. [33] K. R. Marcelino, L. Ling, S. Wongkiew, H. T. Nhan, K. Surendra, T. Shitanaka, H. Lu, and S. K. Khanal, (2023) “Nanobubble Technology Applications in Environmental and Agricultural Systems: Opportunities and Challenges" Critical Reviews in Environmental Science and Technology 53: 1378–1403. DOI: doi.org/10.1080/10643389.2022.2136931.
  34. [34] P. Kemacheevakul, C. Polprasert, and Y. Shimizu, (2011) “Phosphorus Recovery from Human Urine and Anaerobically Treated Wastewater through PH Adjustment and Chemical Precipitation" Environmental Technology 32: 693–698. DOI: doi.org/10.1080/09593330.2010.510537.
  35. [35] S. Wongkiew, M.-R. Park, K. Chandran, and S. K. Khanal, (2018) “Aquaponic Systems for Sustainable Resource Recovery: Linking Nitrogen Transformations to Microbial Communities" Environmental Science Technology 52: 12728–12739. DOI: doi.org/10.1021/acs.est.8b04177.
  36. [36] A. Muhmood, X. Wang, R. Dong, and S. Wu, (2021) “New Insights into Interactions of Organic Substances in Poultry Slurry with Struvite Formation: An Overestimated Concern?" Science of The Total Environment 751: 141789. DOI: doi.org/10.1016/j.scitotenv.2020.141789.
  37. [37] A. S. F. de Araujo, A. R. L. Miranda, R. S. Sousa, L. W. Mendes, J. E. L. Antunes, L. M. d. S. Oliveira, F. F. de Araujo, V. M. M. Melo, and M. d. V. B. Figueiredo, (2019) “Bacterial Community Associated with Rhizosphere of Maize and Cowpea in a Subsequent Cultivation" Applied Soil Ecology 143: 26–34. DOI: doi.org/10.1016/j.apsoil.2019.05.019.
  38. [38] V. Thiel, S.-I. Fukushima, N. Kanno, and S. Hanada. Chloroflexi. In Reference Module in Life Sciences. 2019. DOI: doi.org/10.1016/B978-0-12-809633-8.20771-1.
  39. [39] M.-J. Mehrani, D. Sobotka, P. Kowal, S. Ciesielski, and J. Makinia, (2020) “The Occurrence and Role of Nitrospira in Nitrogen Removal Systems" Bioresource Technology 303: 122936. DOI: doi.org/10.1016/j.biortech.2020.122936.
  40. [40] N. Yadav and A. N. Yadav, (2019) “Actinobacteria for Sustainable Agriculture" Journal of Applied Biotechnology Bioengineering 6: 38–41. DOI: doi.org/10.15406/jabb.2019.06.00172.
  41. [41] W. Islam, H. S. A. Saqib, M. Tayyab, Z. Wang, X. Ding, X. Su, Z. Huang, and H. Y. Chen, (2022) “Natural Forest Chronosequence Maintains Better Soil Fertility Indicators and Assemblage of Total Belowground Soil Biota than Chinese Fir Monoculture in Subtropical Ecosystem" Journal of Cleaner Production 334: 130228. DOI: doi.org/10.1016/j.jclepro.2021.130228.
  42. [42] G. R. Quinn and V. Skerman, (1980) “Herpetosiphon—Nature’s Scavenger?" Current Microbiology 4: 57–62. DOI: doi.org/10.1007/BF02602893.
  43. [43] Z. Wei, Y. He, Z. Huang, X. Xiao, B. Li, S. Ming, and X. Cheng, (2019) “Photocatalytic Membrane Combined with Biodegradation for Toluene Oxidation" Ecotoxicology and Environmental Safety 184: 109618. DOI: doi.org/10.1016/j.ecoenv.2019.109618.
  44. [44] J. Wang, H. Fan, X. He, F. Zhang, J. Xiao, Z. Yan, J. Feng, and R. Li, (2021) “Response of Bacterial Communities to Variation in Water Quality and Physicochemical Conditions in a River-Reservoir System" Global Ecology and Conservation 27: e01541. DOI: doi.org/10.1016/j.gecco.2021.e01541.
  45. [45] C. Martineau, F. Mauffrey, and R. Villemur, (2015) “Comparative Analysis of Denitrifying Activities of Hyphomicrobium Nitrativorans, Hyphomicrobium Denitrificans, and Hyphomicrobium Zavarzinii" Applied and Environmental Microbiology 81: 5003–5014. DOI: doi.org/10.1128/AEM.00848-15.
  46. [46] H. Cai, Y. Zeng, and H. Jiang, (2017) “Draft Genome Sequence of Elstera Cyanobacteriorum, a Novel Facultative Aerobic Bacterium Isolated from Cyanobacterial Aggregates in a Eutrophic Lake" Gene Reports 9: 136–138. DOI: doi.org/10.1016/j.genrep.2017.10.007.
  47. [47] R. Cheng, H. Zhu, B. Shutes, and B. Yan, (2021) “Treatment of Microcystin (MC-LR) and Nutrients in Eutrophic Water by Constructed Wetlands: Performance and Microbial Community" Chemosphere 263: 128139. DOI: doi.org/10.1016/j.chemosphere.2020.128139.
  48. [48] C. Chaiwong, T. Koottatep, Y. Chirasuwannaphot, C. Thanasrilungkul, P. Panchai, W. Chanamarn, P. ( Noophan, T. Kasahara, S. Wongkiew, and C. Polprasert, (2023) “Novel Multifunctional Sewage Sludge-Based Adsorbents for Treatment of Municipal Wastewater" Journal of Applied Science and Engineering 27: 3127– 3146. DOI: doi.org/10.6180/jase.202409_27(9).0010.