- [1] M. S. Hossain, S. Rahaman, A.-L. Kor, K. Andersson, and C. Pattinson, (2017) “A belief rule based expert system for datacenter PUE prediction under uncertainty" IEEE Transactions on Sustainable Computing 2(2): 140–153. DOI: 10.1109/TSUSC.2017.2697768.
- [2] Z. Cheng, J. Yang, L. Zhou, Y. Liu, and Q. Wang, (2016) “Sinter strength evaluation using process parameters under different conditions in iron ore sintering process" Applied Thermal Engineering 105: 894–904. DOI: 10.1016/j.applthermaleng.2016.03.034.
- [3] J. Hu, M. Wu, X. Chen, S. Du, P. Zhang, W. Cao, and J. She, (2018) “A multilevel prediction model of carbon efficiency based on the differential evolution algorithm for the iron ore sintering process" IEEE Transactions on Industrial Electronics 65(11): 8778–8787. DOI: 10.1109/TIE.2018.2811371.
- [4] S. Patil, A. Jalan, and A. Marathe, (2022) “Support vector machine for misalignment fault classification under different loading conditions using vibro-acoustic sensor data fusion" Experimental Techniques: 1–15. DOI: 10.1007/s40799-021-00533-6.
- [5] L. Song, L. Qing, L. Xiaojie, and S. Yanqin, (2020) “Synthetically predicting the quality index of sinter using machine learning model" Ironmaking & Steelmaking 47(7): 828–836. DOI: 10.1080/03019233.2019.1617573.
- [6] S. Mohanan, P. Mohapatra, A. Kumar, R. K. Adepu, V. M. Koranne, Y. Prasad, A. Reddy, and R. Ramna, (2021) “Prediction and Optimization of Internal Return Fines Generation in Iron Ore Sintering Using Machine Learning" Advances in Materials 10(3): 42. DOI: 10.11648/j.am.20211003.12.
- [7] Q. Shan, Q. Ma, Y. Xue, and A. Shui, “The damage mode automatic identification of Al2TiO5 flexible ceramics based on machine learning" Advanced Engineering Materials: DOI: 10.1002/adem.202201642.
- [8] T. Kamal and A. Upadhyaya, (2022) “Machine Learning Based Sintered Density Prediction of Bronze Processed by Powder Metallurgy Route" Metals and Materials International: 1–14. DOI: 10.1007/s12540-022-01338-x.
- [9] A. Mallick, S. Dhara, and S. Rath, (2021) “Application of machine learning algorithms for prediction of sinter machine productivity" Machine Learning with Applications 6: 100186. DOI: 10.1016/j.mlwa.2021.100186.
- [10] H. Zhou, H. Zhang, and C. Yang, (2019) “Hybridmodel-based intelligent optimization of ironmaking process" IEEE Transactions on Industrial Electronics 67(3): 2469–2479. DOI: 10.1109/TIE.2019.2903770.
- [11] L. Feng, C. Zhao, and Y. Sun, (2020) “Dual attention-based encoder–decoder: A customized sequenceto-sequence learning for soft sensor development" IEEE Transactions on Neural Networks and Learning Systems 32(8): 3306–3317. DOI: 10.1109/TNNLS.2020.3015929.
- [12] F. Yan, X. Zhang, C. Yang, B. Hu, W. Qian, and Z. Song, (2023) “Data-driven modelling methods in sintering process: Current research status and perspectives" The Canadian Journal of Chemical Engineering 101(8): 4506–4522. DOI: 10.1002/cjce.24790.
- [13] X. Bai, C. Chen, W. Liu, and H. Zhang. “Data-driven prediction of sinter composition based on multisource information and LSTM network”. In: 2021 40th Chinese Control Conference (CCC). IEEE. 2021, 3311–3316. DOI: 10.23919/CCC52363.2021.9549500.
- [14] P. Zhou, B. Gao, C. Zhao, and T. Chai, (2023) “Heterogeneous data-driven measurement method for FeO content of sinter based on deep learning and tensor decomposition" Control Engineering Practice 134: 105479. DOI: 10.1016/j.conengprac.2023.105479.
- [15] Q. Gao, H. Wang, X. Pan, X. Jiang, H. Zheng, and F. Shen, (2021) “A forecast model of the sinter tumble strength in iron ore fines sintering process" Powder Technology 390: 256–267. DOI: 10.1016/j.powtec.2021.05.063.
- [16] Y. Q. Ying, J. G. Lu, J. S. Chen, and Y. X. Sun, (2012) “PIDNN based intelligent control of ignition oven" Advanced Materials Research 396: 493–497.
- [17] J. An, C. Yang, M. Wu, and S. Du, (2023) “Intelligent Control Strategy for Sintering Ignition Temperature Based on Working-Condition Recognition" IEEE Transactions on Automation Science and Engineering: DOI: 10.1109/TASE.2023.3296475.
- [18] K. Zhou, X. Chen, M. Wu, W. Cao, and J. Hu, (2019) “A new hybrid modeling and optimization algorithm for improving carbon efficiency based on different time scales in sintering process" Control Engineering Practice 91: 104104. DOI: 10.1016/j.conengprac.2019.104104.
- [19] W. Cao, Y. Zhang, J. She, M. Wu, and Y. Cao, (2018) “A dynamic subspace model for predicting burn-through point in iron sintering process" Information Sciences 466: 1–12. DOI: 10.1016/j.ins.2018.06.069.
- [20] S. Du, M. Wu, L. Chen, K. Zhou, J. Hu, W. Cao, and W. Pedrycz, (2019) “A fuzzy control strategy of burnthrough point based on the feature extraction of time-series trend for iron ore sintering process" IEEE Transactions on Industrial Informatics 16(4): 2357–2368. DOI: 10.1109/TII.2019.2935030.
- [21] F. Yan, C. Yang, and X. Zhang, (2022) “DSTED: A denoising spatial–temporal encoder–decoder framework for multistep prediction of burn-through point in sintering process" IEEE Transactions on Industrial Electronics 69(10): 10735–10744. DOI: 10.1109/TIE.2022.3151960.
- [22] F. Yan, C. Yang, X. Zhang, and L. Gao, (2023) “A 3D Convolution-Based Burn-Through Point Multi-Step Prediction Model for Sintering Process" IEEE Transactions on Industrial Electronics: DOI: 10.1109/TIE.2023.3279576.
- [23] Y. Xie, B. He, X. Zhang, and Z. Song. “A Decomposition-based Encoder-Decoder Framework for Multi-step Prediction of Burn-Through Point in Sintering Process”. In: 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE. 2023, 1–6. DOI: 10.1109/ICPS58381.2023.10128029.
- [24] L. McInnes, J. Healy, and J. Melville, (2018) “Umap: Uniform manifold approximation and projection for dimension reduction" arXiv preprint arXiv:1802.03426: DOI: 10.48550/arXiv.1802.03426.
- [25] A. Akusok, K.-M. Björk, Y. Miche, and A. Lendasse, (2015) “High-performance extreme learning machines: a complete toolbox for big data applications" IEEE Access 3: 1011–1025. DOI: 10.1109/ACCESS.2015.2450498.