Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Eko Wahyu AbryandokoThis email address is being protected from spambots. You need JavaScript enabled to view it., Susy Susmartini, Pringgo Widyo Laksono, and Lobes Herdiman

Industrial Engineering, Universitas Sebelas Maret, Kec. Jebres, Kota Surakarta, Jawa Tengah 57126, Indonesia


 

 

Received: November 8, 2023
Accepted: April 29, 2024
Publication Date: July 9, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202505_28(5).0002  


Hybrid assistive robotic neuromuscular dynamic stimulation (HARNDS) is an integration between functional electrical stimulation (FES) and an exoskeleton. The HARNDS control system has the potential to offer a promising technology for the rehabilitation of post-stroke patients. The design of the HARNDS control system requires good planning to enable safety and comfort for post-stroke patients. However, most FES and exoskeleton integration design procedures do not consider modeling and simulation of the control system as an alternative to testing system behavior to ensure the device can work optimally and meet rehabilitation needs. This article aims to simulate the DC motor based on actuator requirement for exoskeletons used for upper limb rehabilitation in post-stroke patients, as well as the control system model in HARNDS using parameters of the electrical components used in the FES. The control system model approach was carried out using Matlab/Simulink software to model the DC motor control system and Proteus 8 Professional software to model the FES circuit control system. The research results show that the exoskeleton, through the DC motor control system model, has fulfilled the requirements for calculating the torque required as an actuator with a lifting load in flexion/extension movements of 8.88 N.m. and supination/pronation of 0.88 N.m. Meanwhile, the FES circuit used is capable of producing an output voltage signal pattern of 80 VAC with an input voltage of 5 VDC. The system response test shows that the exoskeleton and FES can be used as recommendations for rehabilitation needs in post-stroke patients.


Keywords: Modeling; Control System; HARNDS; FES; DC Motor


  1. [1] W. H. FEDERATION. Stroke. 2015.
  2. [2] A. Adomaviˇciene, K. Daunoraviˇcien ˙ e, R. Kubilius, L. ˙ Varžaityte, and J. Raistenskis, (2019) ˙ “Influence of new technologies on post-stroke rehabilitation: a comparison of armeo spring to the kinect system" Medicina 55(4): 98. DOI: 10.3390/medicina55040098.
  3. [3] P. S. Lum, S. Mulroy, R. L. Amdur, P. Requejo, B. I. Prilutsky, and A. W. Dromerick, (2009) “Gains in upper extremity function after stroke via recovery or compensation: potential differential effects on amount of real-world limb use" Topics in stroke rehabilitation 16(4): 237–253. DOI: 10.1310/tsr1604-237.
  4. [4] C. Nam, W. Rong, W. Li, C. Cheung, W. Ngai, T. Cheung, M. Pang, L. Li, J. Hu, H. Wai, et al., (2022) “An exoneuromusculoskeleton for self-help upper limb rehabilitation after stroke" Soft robotics 9(1): 14–35. DOI: 10.1089/soro.2020.0090.
  5. [5] Y. Bouteraa, I. B. Abdallah, and A. Elmogy, (2020) “Design and control of an exoskeleton robot with EMGdriven electrical stimulation for upper limb rehabilitation" Industrial Robot: the international journal of robotics research and application 47(4): 489–501. DOI: 10.1108/IR-02-2020-0041.
  6. [6] C. H. Ho, R. J. Triolo, A. L. Elias, K. L. Kilgore, A. F. DiMarco, K. Bogie, A. H. Vette, M. L. Audu, R. Kobetic, S. R. Chang, et al., (2014) “Functional electrical stimulation and spinal cord injury" Physical Medicine and Rehabilitation Clinics 25(3): 631–654. DOI: 10.1016/j.pmr.2014.05.001.
  7. [7] K. Su, Z. Qiu, and J. Xu, (2023) “A 14-Bit, 12 V-to-100 V Voltage Compliance Electrical Stimulator with Redundant Digital Calibration" Micromachines 14(11): 2001. DOI: 10.3390/mi14112001.
  8. [8] Y.-K. Lo, R. Hill, K. Chen, and W. Liu, (2013) “Precision control of pulse widths for charge balancing in functional electrical stimulation": 1481–1484. DOI: 10.0/Linux-x86_64.
  9. [9] E. W. Abryandoko, S. Susmartini, L. P. Widyo, and L. Herdiman, (2024) “Literature review: User interface of system functional electrical stimulation (FES) and arm robotic rehabilitation" Journal of Applied Engineering Science 22(1): 55–68. DOI: 10.5937/jaes0-44644.
  10. [10] W. Rong, W. Li, M. Pang, J. Hu, X. Wei, B. Yang, H. Wai, X. Zheng, and X. Hu, (2017) “A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke" Journal of neuroengineering and rehabilitation 14: 1–13. DOI: 10.1186/s12984-017-0245-y.
  11. [11] C. Urrea and J. Kern, (2011) “A new model for analog servo motors. Simulations and experimental results" Canadian Journal on Automation, Control and Intelligent Systems 2(2): 29–38.
  12. [12] N. SHEWALE and R. Deivanathan, (2018) “Modelling and analysis of DC motor actuator for an electric gripper" Journal of Engineering Science and Technology 13(4): 862–874.
  13. [13] M. A. Alouane, W. Huo, H. Rifai, Y. Amirat, and S. Mohammed, (2019) “Hybrid fes-exoskeleton controller to assist sit-to-stand movement" IFAC-PapersOnLine 51(34): 296–301. DOI: 10.1016/j.ifacol.2019.01.032.
  14. [14] X. Bao, V. Molazadeh, A. Dodson, B. E. Dicianno, and N. Sharma, (2020) “Using person-specific muscle fatigue characteristics to optimally allocate control in a hybrid exoskeleton—preliminary results" IEEE transactions on medical robotics and bionics 2(2): 226–235. DOI: 10.1109/TMRB.2020.2977416.
  15. [15] N. A. Kirsch, X. Bao, N. A. Alibeji, B. E. Dicianno, and N. Sharma, (2017) “Model-based dynamic control allocation in a hybrid neuroprosthesis" IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(1): 224–232. DOI: 10.1109/TNSRE.2017.2756023.
  16. [16] X. Bao, N. Kirsch, A. Dodson, and N. Sharma, (2019) “Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty" Journal of Computational and Nonlinear Dynamics 14(10): 101009. DOI: 10.1115/1.4042903.
  17. [17] Z. Guo, S. Zhou, K. Ji, Y. Zhuang, J. Song, C. Nam, X. Hu, and Y. Zheng, (2022) “Corticomuscular integrated representation of voluntary motor effort in robotic control for wrist-hand rehabilitation after stroke" Journal of Neural Engineering 19(2): 026004. DOI: 10.1088/1741-2552/ac5757.
  18. [18] K. E. Cheng, Y. Lu, K.-Y. Tong, A. Rad, D. H. Chow, and D. Sutanto, (2004) “Development of a circuit for functional electrical stimulation" IEEE Transactions on neural systems and rehabilitation engineering 12(1): 43–47. DOI: 10.1109/TNSRE.2003.819936.
  19. [19] C. Shendkar, P. K. Lenka, A. Biswas, R. Kumar, and M. Mahadevappa, (2015) “Design and development of a low-cost biphasic charge-balanced functional electric stimulator and its clinical validation" Healthcare technology letters 2(5): 129–134. DOI: 10.1049/htl.2015.0001.
  20. [20] K. S. Beekhuizen and E. C. Field-Fote, (2005) “Massed practice versus massed practice with stimulation: effects on upper extremity function and cortical plasticity in individuals with incomplete cervical spinal cord injury" Neurorehabilitation and neural repair 19(1): 33–45. DOI: 10.1177/1545968305274517.
  21. [21] C.-F. Chen, W.-S. Chen, L.-W. Chou, Y.-J. Chang, S.-C. Chen, T.-S. Kuo, and J.-S. Lai, (2012) “Pulse energy as a reliable reference for twitch forces induced by transcutaneous neuromuscular electrical stimulation" IEEE Transactions on neural systems and rehabilitation engineering 20(4): 574–583. DOI: 10.1109/TNSRE.2012.2188305.
  22. [22] T. K. Chuan, M. Hartono, and N. Kumar, (2010) “Anthropometry of the Singaporean and Indonesian populations" International Journal of Industrial Ergonomics 40(6): 757–766. DOI: 10.1016/j.ergon.2010.05.001.
  23. [23] K. K. RI. Peraturan menteri tenaga kerja republik Indonesia nomor: PER.03/MEN/1999. 1999.
  24. [24] S. Bruno, M. José, S. Filomena, C. Vítor, M. Demétrio, and B. Karolina, (2016) “The conceptual design of a mechatronic system to handle bedridden elderly individuals" Sensors 16(5): 725. DOI: 10.3390/s16050725.
  25. [25] D. Copaci, E. Cano, L. Moreno, D. Blanco, et al., (2017) “New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators" Applied Bionics and Biomechanics 2017: DOI: 10.1155/2017/1605101.
  26. [26] V. H. Pinto, J. Gonçalves, and P. Costa, (2020) “Modeling and control of a dc motor coupled to a non-rigid joint" Applied System Innovation 3(2): 24. DOI: 10.3390/asi3020024.
  27. [27] A. C. Valdiero, C. S. Ritter, C. F. Rios, M. Rafikov, et al., (2011) “Nonlinear mathematical modeling in pneumatic servo position applications" Mathematical Problems in Engineering 2011: DOI: 10.1155/2011/472903.