Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Aiman A. Bin Mokaizh1This email address is being protected from spambots. You need JavaScript enabled to view it., Abdurahman Hamid Nour1,2This email address is being protected from spambots. You need JavaScript enabled to view it., Rosli Mohd Yunus1, and Ahmed A. M. Elnour2

1Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia

2Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26300, Pahang, Malaysia


 

 

Received: May 2, 2024
Accepted: June 23, 2024
Publication Date: July 11, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202505_28(5).0009  


Commiphora gileadensis is a significant medicinal plant with various therapeutic uses. The plant’s phytoconstituents possess antioxidant, antibacterial, cytotoxic, anticancer, and antiviral properties, which recently attracted research interest. The objectives are as follows: (i) this study serves as the first Systematic Literature Review (SLR) on C. gileadensis that identified the used extraction methods to extract the bioactive components of C. gileadensis; (ii) outlined the literature study gap and stated the future trends’ recommendations. The existing literature on C. gileadensis was searched on Scopus, PubMed, and Web of Science. This PRISMA-style article searches covered articles published between 2010 to 2022. The search was conducted using common terms like "Commiphora gileadensis," "Balm of Gilead," "Balm of Judea," "Apharsemon," "Opobalsamum," and "Becham". The search on the three databases yielded 156 documents, 55 of which were included. The SLR study found low extraction yields and phenolic contents of the phytochemical components of C. gileadensis due to ineffective extraction techniques and process parameters. More so, these might involve environmental implications for how resources are used, how much energy is consumed, and how much waste is produced throughout the extraction process. The SLR overcame the limitations of traditional extraction methods and boosted phenolic content recovery by using eco-friendly technique such as Microwave-Assisted Extraction (MAE). It also recommended researching how improved extraction methods affect the phytochemical composition and recovery yield of the extracts.


Keywords: Environmental implications; Traditional extraction methods; C. gileadensis; Systematic literature review; Green extraction methods.


  1. [1] E. A. Alsherif, (2019) “Ecological studies of Commiphora genus (myrrha)in Makkah region, Saudi Arabia" Heliyon 5(5): DOI: 10.1016/j.heliyon.2019.e01615.
  2. [2] A. S. Bouville, G. Erlich, S. Azoulay, and X. Fernandez, (2019) “Forgotten Perfumery Plants – Part I: Balm of Judea" Chem. Biodivers. 16(12): DOI: 10.1002/cbdv.201900506.
  3. [3] K. A. Shadid et al., (2023) “Exploring the Chemical Constituents, Antioxidant, Xanthine Oxidase and COX Inhibitory Activity of Commiphora gileadensis Commonly Grown Wild in Saudi Arabia" Molecules 28(5): 2321. DOI: 10.3390/molecules28052321.
  4. [4] A. A. B. Mokaizh, N. H. Abdurahman, R. M. Yunusa, O. AlHaiqi, and A. A. M. Elnour, (2023) “Chemical compositions and biological activities of Commiphora gileadensis: A review" Ciência e Técnica Vitivinícola 38: DOI: 10.59879/cbwsi.
  5. [5] A. I., (2016) “Doa rsquo a et al., “Therapeutic and preventive effects of Commiphora gileadensis against diethylnitrosamine-induced hepatic injury in albino rats, ” African J" Pharm. Pharmacol. 10(16): 356–363. DOI: 10.5897/ajpp2015.4374.
  6. [6] J. Eslamieh, (2011) “Commiphora gileadensis" Cactus Succul. J. 83(5): 206–210. DOI: 10.2985/0007-9367- 83.5.206.
  7. [7] A. A. B. Mokaizh, A. H. Nour, O. R. Alara, and A. O. Baarimah. “Bioactive Components of Commiphora Gileadensis Plant for Various Medicinal Applications: A Bibliometric Analysis”. In: 2022 International Conference on Data Analytics for Business and Industry (ICDABI). 2022, 21–27. DOI: 10.1109/ICDABI56818.2022.10041668.
  8. [8] A. A. B. Mokaizh, A. N. Hamid, R. M. Yunus, N. Ismail, and E. F. Hawege, (2024) “Characterizations of Commiphora gileadensis plant: A review and future trends" p. 050011: DOI: 10.1063/5.0194726.
  9. [9] A. Alhazmi et al., (2022) “Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing" Molecules 27(10): DOI: 10.3390/molecules27103320.
  10. [10] A. Khan et al., (2019) “First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. Foliacea: Myrrh producing trees" PLoS One 14(1): DOI: 10.1371/journal.pone.0208511.
  11. [11] S. B. Yehoshua, R. Ofir, S. Rachmilevitch, E. Amiel, N. Dudai, and E. Soloway. Revival of the extinct balm of gilead in Israel: Studying its anti-cancer activity. 1088. 2015. DOI: 10.17660/ActaHortic.2015.1088.93.
  12. [12] A. Khan et al., (2019) “First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. Foliacea: Myrrh producing trees" PLoS One 14(1): DOI: 10.1371/journal.pone.0208511.
  13. [13] A. I. I. Al-sieni, (2014) “The antibacterial activity of traditionally used Salvadora persica L. (miswak) and Commiphora gileadensis (palsam) in Saudi Arabia" Afr. J. Tradit. Complement. Altern. Med. 11(1): 23–27. DOI: 10.4314/ajtcam.v11i1.3.
  14. [14] D. Iluz, M. Hoffman, N. Gilboa-Garber, and Z. Amar, (2010) “Medicinal properties of Commiphora gileadensis" African J. Pharm. Pharmacol. 4(8): 516–520.
  15. [15] Y. Q. Almulaiky and A. Al-Farga, (2020) “Evaluation of antioxidant enzyme content, phenolic content, and antibacterial activity of Commiphora gileadensis grown in Saudi Arabia" Main Gr. Chem. 19(4): 329–343. DOI: 10.3233/MGC-200969.
  16. [16] A. A. B. Mokaizh, A. H. Nour, and K. Kerboua, (2024) “Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves" Ultrason. Sonochem. 105: 106852. DOI: 10.1016/j.ultsonch.2024.106852.
  17. [17] H. M. Abdallah et al., (2022) “Commigileadin A: A new triterpenoid from Commiphora gileadensis aerial parts" Pharmacogn. Mag. 18(78): 256. DOI: 10.4103/PM.PM\_118\_21.
  18. [18] D. Mahr, (2012) “Commiphora: An Introduction to the Genus" Cactus Succul. J. 84(3): 140–154. DOI: 10.2985/0007-9367-84.3.140.
  19. [19] O. R. Alara, N. H. Abdurahman, and C. I. Ukaegbu, (2021) “Extraction of phenolic compounds: A review" Curr. Res. Food Sci. 4: 200–214. DOI: 10.1016/j.crfs.2021.03.011.
  20. [20] Rasul, (2018) “Mohamad Golam, “Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages, ” Int" J. Basic Sci. Appl. Comput., no. 6: 10–14.
  21. [21] Q. W. Zhang, L. G. Lin, and W. C. Ye, (2018) “Techniques for extraction and isolation of natural products: A comprehensive review" Chinese Med. (United Kingdom) 13(1): 1–26. DOI: 10.1186/S13020-018- 0177- X/FIGURES/4.
  22. [22] O. M. A. Zoubi, (2019) “Evaluation of anti-microbial activity of ex vitro and callus extracts from commiphora gileadensis" Pakistan J. Biol. Sci. 22(2): 73–82. DOI: 10.3923/pjbs.2019.73.82.
  23. [23] W. Mengist, T. Soromessa, and G. Legese, (2020) “Method for conducting systematic literature review and meta-analysis for environmental science research" MethodsX 7: 100777. DOI: 10.1016/J.MEX.2019.100777.
  24. [24] F. Shu, C. A. Julien, L. Zhang, J. Qiu, J. Zhang, and V. Larivière, (2019) “Comparing journal and paper level classifications of science" J. Informetr. 13(1): 202–225. DOI: 10.1016/J.JOI.2018.12.005.
  25. [25] A. Vijayakumar, M. N. Mahmood, A. Gurmu, I. Kamardeen, and S. Alam. “Social sustainability assessment of road infrastructure: a systematic literature review”. Qual. Quant. 2023. DOI: 10.1007/s11135-023-01683-y.
  26. [26] A. Lorenzo-Lledó, G. L. Lledó, A. Lledó, and E. PérezVázquez. “Inclusive education at university: a scientific mapping analysis”. Qual. Quant. 2023. DOI: 10.1007/s11135-023-01712-w.
  27. [27] C. S. Peros, R. Dasgupta, R. C. Estoque, and M. Basu, (2022) “Ecosystem services of ‘Trees Outside Forests (TOF)’ and their contribution to the contemporary sustainability agenda: a systematic review" Environ. Res. Commun. 4(11): 112002. DOI: 10.1088/2515-7620/ac9d86.
  28. [28] H. Keathley-Herring, E. V. Aken, F. Gonzalez-Aleu, F. Deschamps, G. Letens, and P. C. Orlandini, (2016) “Assessing the maturity of a research area: bibliometric review and proposed framework" Scientometrics 109(2): 927–951. DOI: 10.1007/S11192-016-2096-X/TABLES/ 5.
  29. [29] M.-T. Ho, N.-T. B. Le, M.-T. Ho, and Q.-H. Vuong, (2022) “A bibliometric review on development economics research in Vietnam from 2008 to 2020" Qual. Quant. 56(5): 2939–2969. DOI: 10.1007/s11135-021-01258-9.
  30. [30] H. Masud, R. Thurasamy, and M. S. Ahmad, (2015) “Parenting styles and academic achievement of young adolescents: A systematic literature review" Qual. Quant. 49(6): 2411–2433. DOI: 10.1007/s11135-014-0120-x.
  31. [31] M. Blažev, T. Babarovi´c, and P. Serracant, (2021) “Characteristics of piloting longitudinal birth cohort surveys: a systematic review" Qual. Quant. 55(3): 1047– 1069. DOI: 10.1007/s11135-020-01042-1.
  32. [32] Y. H. Dulanlebit and H. Hernani, (2023) “Overview of Extraction Methods for Extracting Seaweed and its Applications" J. Penelit. Pendidik. IPA 9(2): 817–824. DOI: 10.29303/jppipa.v9i2.3053.
  33. [33] A. E. ˙Ince, S. ¸Sahin, and S. G. ¸Sümnü. “Extraction of phenolic compounds from melissa using microwave and ultrasound”. Turkish J. Agric. For. 2013. DOI: 10.3906/tar-1201-1.
  34. [34] O. R. Alara, N. H. Abdurahman, and C. I. Ukaegbu, (2021) “Extraction of phenolic compounds: A review" Curr. Res. Food Sci. 4: 200–214. DOI: 10.1016/J.CRFS.2021.03.011.
  35. [35] J. Wanner et al., (2010) “Chemical Composition, Olfactory Evaluation and Antimicrobial Activity of Selected Essential Oils and Absolutes from Morocco" Nat. Prod. Commun. 5(9): 1934578X. DOI: 10.1177/1934578X1000500903.
  36. [36] O. R. Alara, N. H. Abdurahman, and C. I. Ukaegbu, (2018) “Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity" J. Appl. Res. Med. Aromat. Plants 11: 12–17. DOI: 10. 1016/J.JARMAP.2018.07.003.
  37. [37] C. Y. Cheok, H. A. K. Salman, and R. Sulaiman, (2014) “Extraction and quantification of saponins: A review" Food Res. Int. 59: 16–40. DOI: 10.1016/j.foodres.2014.01.057.
  38. [38] H. N. Althurwi, M. A. A. Salkini, G. A. Soliman, M. N. Ansari, E. O. Ibnouf, and M. S. Abdel-Kader, (2022) “Wound Healing Potential of Commiphora gileadensis Stems Essential Oil and Chloroform Extract" Separations 9(9): DOI: 10.3390/separations9090254.
  39. [39] L. F. Shalabi and F. S. Otaif, (2022) “Commiphora Jacq (Burseraceae) in Saudi Arabia, Botanical, Phytochemical and Ethnobotanical Notes" Ecologies 3(2): 38–57. DOI: 10.3390/ecologies3020005.
  40. [40] M. S. Abdel-Kader, E. O. Ibnouf, M. H. Alqarni, A. S. Alqutaym, A. A. Salkini, and A. I. Foudah, (2022) “Terpenes from the Fresh Stems of Commiphora gileadensis with Antimicrobial Activity" Rec. Nat. Prod. 16(6): 605– 613. DOI: 10.25135/318.2202.2358.
  41. [41] I. Ghenabzia, H. Hemmami, I. B. Amor, S. Zeghoud, B. B. Seghir, and R. Hammoudi, (2023) “Different methods of extraction of bioactive compounds and their effect on biological activity: A review" Int. J. Second. Metab. 10(4): 469–494. DOI: 10.21448/ijsm.1225936.
  42. [42] S. A. Al-Zahrani et al., (2022) “Anticancer potential of biogenic silver nanoparticles using the stem extract of Commiphora gileadensis against human colon cancer cells" Green Process. Synth. 11(1): 435–444. DOI: 10.1515/gps-2022-0042.
  43. [43] M. Ahmad et al., (2021) “Evaluation of the Toxicological Profile of Commiphora opobalsamum in Wister Rats for Its Safety and Rational Use" researchgate.net 33(2): 31–42. DOI: 10.9734/jpri/2021/v33i19A31324.
  44. [44] L. M. Khan, A. A. Al-Salmi, M. A. Alim, A. S. Ahmad, and L. M. Khan, (2021) “An Experimental Exploratory Study for the Mechanism of Anti-Inflammatory Action of Mecca Myrrh (Commiphora opobalsamum)" researchgate.net 33(29A): 152–165. DOI: 10.9734/JPRI/2021/v33i29A31574.
  45. [45] H. A. E. Rabey, A. I. Al-Sieni, M. N. Al-Seeni, M. A. Alsieni, A. I. Alalawy, and F. M. Almutairi, (2020) “The antioxidant and antidiabetic activity of the Arabian balsam tree ‘ Commiphora gileadensis ’ in hyperlipidaemic male rats" J. Taibah Univ. Sci. 14(1): 831–841. DOI: 10.1080/16583655.2020.1780020.
  46. [46] A. S. Al-Hazmi et al., (2020) “In vitro and in vivo antibacterial effect of commiphora gileadensis methanolic extract against methicillin-resistant staphylococcus aureus (Mrsa) and pseudomonas aeruginosa" Pakistan J. Biol. Sci. 23(12): 1676–1680. DOI: 10.3923/pjbs.2020. 1676.1680.
  47. [47] H. Al-Mahbashi et al. Preliminary Phytochemical Composition and Biological Activities of Methanolic Extract of Commiphora Gileadensis L Antimicrobial Resistance Genes View project Preliminary Phytochemical Composition and Biological Activities of Methanolic Extract of Commiphora Gileadensis L. 2019. URL: https://www.researchgate.net/publication/334194735
  48. [48] Y. Q. Almulaiky and S. A. Al-Harbi, (2019) “A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material" Int. J. Biol. Macromol. 133: 767–774. DOI: 10.1016/j.ijbiomac.2019.04.119.
  49. [49] L. Bouslama, B. Kouidhi, Y. M. Alqurashi, K. Chaieb, and A. Papetti, (2019) “Virucidal Effect of Guggulsterone Isolated from Commiphora gileadensis" Planta Med. 85(16): 1225–1232. DOI: 10.1055/a-1014-3303.
  50. [50] N. Dudai, A. Shachter, P. Satyal, and W. Setzer, (2017) “Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis)" Medicines 4(3): 66. DOI: 10.3390/medicines4030066.
  51. [51] A. A. El-Gamal et al., (2017) “Prenylated flavonoids from Commiphora opobalsamum stem bark" Phytochemistry 141: 80–85. DOI: 10.1016/j.phytochem.2017.05.014.
  52. [52] N. Zhao et al., (2015) “Two new sesquiterpenes from Myrrh" Helv. Chim. Acta 98(9): 1332–1336. DOI: 10.1002/hlca.201500094.
  53. [53] E. Wineman et al., (2015) “Commiphora gileadensis sap extract induces cell cycle-dependent death in immortalized keratinocytes and human dermoid carcinoma cells" J. Herb. Med. 5(4): 199–206. DOI: 10.1016/j.hermed.2015.08.001.
  54. [54] M. H. A. Suleiman, (2015) “Prenylated flavonoids from the stem wood of Commiphora opobalsamum (L.) Engl. (Burseraceae)" J. King Saud Univ. - Sci. 27(1): 71–75. DOI: 10.1016/j.jksus.2014.04.005.
  55. [55] F. A. Al-Mahbashi, M. Hassan, A. El-Shaibany, and Saad, (2022) “Evaluation of acute toxicity and antimicrobial effects of the bark extract of Bisham (Commiphora gileadensis L.)" J. Chem. Pharm. Res. 7: 810–814.
  56. [56] A. I. Al-sieni, (2014) “The antibacterial activity of traditionally used Salvadora persica L. (miswak) and Commiphora gileadensis (palsam) in Saudi Arabia" Afr. J. Tradit. Complement. Altern. Med. 11(1): 23–27.
  57. [57] W. Gao et al., (2014) “Dehydroabietic Acid Isolated from Commiphora opobalsamum Causes EndotheliumDependent Relaxation of Pulmonary Artery via PI3K/AkteNOS Signaling Pathway" Molecules 19(6): 8503–8517. DOI: 10.3390/molecules19068503.
  58. [58] T. Shen et al., (2014) “Myrrhanolide D and Myrrhasin A, new germacrane-type sesquiterpenoids from the resin of Commiphora opobalsamum" Helv. Chim. Acta 97(6): 881–886. DOI: 10.1002/hlca.201300328.
  59. [59] S. S. Y. Rachmilevitch, E. Amiel, R. O. Israel, N. D. Israel, and E. Soloway. “Revival of the Extinct Balm of Gilead in Israel: Studying Its Anti-Cancer Activity”. 2013.
  60. [60] E. Amiel, R. Ofir, N. Dudai, E. Soloway, T. Rabinsky, and S. Rachmilevitch, (2012) “-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines" Evidence-based Complement. Altern. Med. 2012: DOI: 10.1155/2012/872394.
  61. [61] J. L. Yang and Y. P. Shi, (2012) “Cycloartane-type triterpenoids and sesquiterpenoids from the resinous exudates of Commiphora opobalsamum" Phytochemistry 76: 124– 132. DOI: 10.1016/j.phytochem.2012.01.004.
  62. [62] D. Iluz, M. Hoffman, N. Gilboa-Garber, and Z. Amar, (2010) “Medicinal properties of Commiphora gileadensis" African J. Pharm. Pharmacol. 4(8): 516–520.
  63. [63] J. A. Abdulhakim, (2022) “Effect of guggulsterone, a sterol identified in Commiphora gileadensis (Becham), on the dengue virus enzymes: Pharmacokinetics, molecular docking and molecular dynamics simulations studies" J. King Saud Univ. - Sci. 34(6): DOI: 10.1016/j.jksus.2022.102140.
  64. [64] A.-S. Bouville, G. Erlich, S. Azoulay, and X. Fernandez, (2019) “Forgotten Perfumery Plants – Part I: Balm of Judea" Chem. Biodivers. 16(12): DOI: 10.1002/cbdv.201900506.
  65. [65] T.-B. Zou, E.-Q. Xia, T.-P. He, M.-Y. Huang, Q. Jia, and H.-W. Li, (2014) “Ultrasound-Assisted Extraction of Mangiferin from Mango (Mangifera indica L.) Leaves Using Response Surface Methodology" Molecules 19(2): 1411–1421. DOI: 10.3390/molecules19021411.
  66. [66] G. Fomo, T. N. Madzimbamuto, and T. V. Ojumu, (2020) “Applications of Nonconventional Green Extraction Technologies in Process Industries: Challenges, Limitations and Perspectives" Sustainability 12(13): 5244. DOI: 10.3390/su12135244.
  67. [67] M. M. Hurkul, A. Cetinkaya, S. Yayla, and S. A. Ozkan, (2024) “Advanced sample preparation and chromatographic techniques for analyzing plant-based bioactive chemicals in nutraceuticals" J. Chromatogr. Open 5: 100131. DOI: 10.1016/j.jcoa.2024.100131.
  68. [68] S. Zhou, L. Liu, B. Wang, F. Xu, and R. Sun, (2012) “Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study" Process Biochem. 47(12): 1799–1806. DOI: 10.1016/j.procbio.2012.06.006.
  69. [69] B. A. Guler, U. Tepe, and E. Imamoglu, (2024) “Sustainable Point of View: Life Cycle Analysis for Green Extraction Technologies" ChemBioEng Rev. 11(2): 348– 362. DOI: 10.1002/cben.202300056.
  70. [70] M. M. A. Sacramento et al., (2022) “Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications" Front. Bioeng. Biotechnol. 10: DOI: 10.3389/fbioe.2022.1041102.
  71. [71] M. Devgun, A. Nanda, and S. H. Ansari, (2012) “COMPARISON OF CONVENTIONAL AND NON CONVENTIONAL METHODS OF EXTRACTION OF HEARTWOOD OF PTEROCARPUS MARSUPIUM ROXB" 69(3): 475–485.
  72. [72] I. Usman et al., (2022) “Traditional and innovative approaches for the extraction of bioactive compounds" Int. J. Food Prop. 25(1): 1215–1233. DOI: 10.1080/10942912.2022.2074030.
  73. [73] T. Belwal et al., (2020) “Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures" TrAC Trends Anal. Chem. 127: 115895. DOI: 10.1016/j.trac.2020.115895.
  74. [74] G. S. D. Rosa, S. K. Vanga, Y. Gariepy, and V. Raghavan, (2019) “Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.)" Innov. Food Sci. Emerg. Technol. 58: 102234. DOI: 10.1016/j.ifset. 2019.102234.
  75. [75] H. Ahmed et al., (2023) “Antioxidant activity and total phenolic compounds of Commiphora gileadensis extracts obtained by ultrasonic-assisted extraction, with monitoring antiaging and cytotoxicity activities" Food Sci. Nutr. 11(6): 3506–3515. DOI: 10.1002/fsn3.3339.
  76. [76] H. Ahmed et al., (2024) “UPLC-qTOF-MS phytochemical profile of Commiphora gileadensis leaf extract via integrated ultrasonic-microwave-assisted technique and synthesis of silver nanoparticles for enhanced antibacterial properties" Ultrason. Sonochem. 107: 106923. DOI: 10.1016/j.ultsonch.2024.106923.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.