Zainab John1,2This email address is being protected from spambots. You need JavaScript enabled to view it., Teh Yuan Ying1, Fadhel Subhi Fadhel3, and Ali F. Jameel4
1School of Quantitative Sciences, College of Art and Sciences, Universiti Utara Malaysia (UUM), Malaysia
2Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
3Department of Mathematics and Computer Applications, College of Science, Al-Nahrain University, Jadriya, Baghdad, Iraq
4Faculty of Education and Arts, Sohar University, Sultanate of Oman
Received: October 1, 2024 Accepted: November 25, 2024 Publication Date: March 7, 2025
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
In this work, asetoflawshasbeenproposedasagroupoffeedbackcontrolstabilizingaboundarylawforalinear fuzzy reaction-advection-diffusion equation. Stabilization is achieved by designing coordinate transformations that form recursive relationships; by using the fuzzy finite difference method, we can convert coordinates into other coordinates. This design process is unlimited to any specific kinds of boundary actuation and can handle systems with an arbitrarily finite number of eigenvalues for the unstable open-loop system. We noticed that there is another problem when converting coordinates, which is that the equation includes lower and upper functions, so we wrote the equations in the form of matrices and then converted them into ordinary differential equations. The problem of feedback, which becomes increasingly unbounded as the grid gets infinitely fine, is solved by carefully selecting the target system to which the original system is transformed. Then we stabilize the closed loop system and the regularity of control and solutions to the fuzzy reaction-advection-diffusion equation.
[1] S. S. Chang and L. A. Zadeh, (1972) "On fuzzy mapping and control" IEEE transactions on systems, man, and cybernetics (1): 30-34.
[2] C. Travis and G. Webb, (1974) "Existence and stability for partial functional differential equations" Transactions of the American Mathematical Society 200: 395-418.
[3] A. Balogh and M. Krstic, (2004) "Stability of partial difference equations governing control gains in infinitedimensional backstepping" Systems & control letters 51(2): 151-164. DOI: 10.1016/S0167-6911(03)00222-6.
[4] M. A. Alqudah, R. Ashraf, S. Rashid, J. Singh, Z. Hammouch, and T. Abdeljawad, (2021) "Novel numerical investigations of fuzzy Cauchy reaction-diffusion models via generalized fuzzy fractional derivative operators" Fractal and Fractional 5(4): 151. DOI: 10.3390/fractalfract5040151.
[5] A.Smyshlyaev and M. Krstic. “Lyapunov adaptive boundary control for parabolic PDEs with spatially varying coefficients”. In: 2006 American Control Con ference. IEEE. 2006, 41–48. DOI: 10.1109/ACC.2006.1655328.
[6] A.Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter. Representation and control of infinite dimensional systems. 1. Springer, 2007. DOI: 10.1007/978-0-8176 4581-6.
[7] R. F. Curtain and H. Zwart. An introduction to infinite dimensional linear systems theory. 21. Springer Science &Business Media, 2012.
[8] W. Liu, (2003) “Boundary feedback stabilization of an unstable heat equation" SIAM journal on control and optimization 42(3): 1033–1043. DOI: 10.1137/S0363012902402414.
[9] M. Krstic and A. Smyshlyaev. Boundary control of PDEs: A course on backstepping designs. SIAM, 2008. DOI: 10.5555/1378241.
[10] D. Tsubakino, M. Krstic, and S. Hara. “Backstepping control for parabolic pdes with in-domain actuation”. In: 2012 American Control Conference (ACC). IEEE. 2012, 2226–2231. DOI: 10.1109/ACC.2012.6315358.
[11] J. M. Belman-Flores, D. A. Rodríguez-Valderrama, S. Ledesma, J. J. García-Pabón, D. Hernández, and D. M.Pardo-Cely, (2022) “A review on applications of fuzzy logic control for refrigeration systems" Applied Sciences 12(3): 1302. DOI: 10.3390/app12031302.
[12] P. Chotikunnan, R. Chotikunnan, A. Nirapai, A. Wongkamhang, P. Imura, and M. Sangworasil, (2023) “Optimizing Membership Function Tuning for Fuzzy Con trol of Robotic Manipulators Using PID-Driven Data Techniques" Journal of Robotics and Control (JRC) 4(2): 128–140. DOI: 10.18196/jrc.v4i2.18108.
[13] D. N.NguyenandT. A. Nguyen, (2024) “Fuzzy back stepping control to enhance electric power steering sys tem performance" IEEE Access 12: 88681–88695. DOI: 10.1109/ACCESS.2024.3419001.
[14] D. Yu, S. Ma, Y.-J. Liu, Z. Wang, and C. P. Chen, (2023) “Finite-time adaptive fuzzy backstepping control for quadrotor UAV with stochastic disturbance" IEEE Transactions on Automation Science and Engineer ing 21(2): 1335–1345. DOI: 10.1109/TASE.2023.3282661.
[15] S. Salahshour, (2011) “Nth-order fuzzy differential equa tions under generalized differentiability" Journal of fuzzy set Valued Analysis 2011: 1–14. DOI: 10.5899/2011/jfsva-00043.
[16] L. Shao, J. Sun, and X. Hui. Fuzzy Systems, Knowl edge Discovery and Natural Computation Symposium: FSKDNC2013. DEStech Publications, Inc, 2013.
[17] G. J. McRae, W. R. Goodin, and J. H. Seinfeld, (1982) “Numerical solution of the atmospheric diffusion equa tion for chemically reacting flows" Journal of Com putational Physics 45(1): 1–42. DOI: 10.1016/0021-9991(82)90101-2.
[18] A. J. Perumpanani, J. A. Sherratt, and P. K. Maini, (1995) “Phase differences in reaction-diffusion-advection systems and applications to morphogenesis" IMA Jour nal of Applied Mathematics 55(1): 19–33. DOI: 10.1093/IMAMAT/55.1.19.
[19] N. Emken and C. Engwer, (2020) “A Reaction Diffusion–Advection Model for the Establishment and Maintenance of Transport-Mediated Polarity and Symme try Breaking" Frontiers in Applied Mathematics and Statistics 6: 570036. DOI: 10.3389/fams.2020.570036.
[20] O. M.Atyia, F. S. Fadhel, and M. H. Alobaidi, (2023) “Using Variational Iteration Method for Solving Linear Fuzzy Random Ordinary Differential Equations." Math ematical Modelling of Engineering Problems 10(4): DOI: 10.18280/mmep.100442.
[21] F. S. Fadhel, J. H. Eidi, H. M. Wali, et al., (2021) “Con traction mapping theorem in partial fuzzy metric spaces" Journal of Applied Science and Engineering 25(2): 353–360. DOI: 10.6180/jase.202204_25(2).0020.
[22] S. Abbasbandy and T. Hajjari, (2009) “A new approach for ranking of trapezoidal fuzzy numbers" Computers & mathematics with applications 57(3): 413–419. DOI: 10.1016/j.camwa.2008.10.090.
[23] H.Razzaq and F. S. Fadhel, (2023) “Variational Itera tion Approach for Solving Two-Points Fuzzy Boundary Value Problems" Al-Nahrain Journal of Science 26(3): 51–59. DOI: 10.22401/anjs.26.3.08.
[25] L. Stefanini, (2010) “A generalization of Hukuhara dif ference and division for interval and fuzzy arithmetic" Fuzzy sets and systems 161(11): 1564–1584. DOI: 10.1016/j.fss.2009.06.009.
[26] T. Allahviranloo and S. Gholami, (2012) “Note on Generalized Hukuhara differentiability of interval-valued functions and interval differential equations" Journal of fuzzy set Valued Analysis 2012(4): DOI: 10.5899/2012/JFSVA-00135.
[27] T. Allahviranloo, Z. Gouyandeh, A. Armand, and A. Hasanoglu, (2015) “On fuzzy solutions for heat equation based on generalized Hukuhara differentiability" Fuzzy sets and systems 265: 1–23. DOI: 10.1016/j.fss.2014.11.009.
[28] I. K. HANAN, M. Z. AHMAD, and F. S. FADHEL, (2017) “The Backstepping Method For Stabilizing Time Fractional Order Partial Differential Equation" Journal of Theoretical & Applied Information Technology 95(6):
[29] A. Balogh and M. Krstic. “Infinite-step backstepping for a heat equation-like PDE with arbitrarily many unstable eigenvalues”. In: Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148). 3. IEEE. 2001, 2480–2485. DOI: 10.1109/ACC.2001.946125.
[30] D. M. Boškovi´c, A. Balogh, and M. Krsti´c, (2003) “Backstepping in infinite dimension for a class of parabolic distributed parameter systems" Mathematics of Con trol, Signals and Systems 16: 44–75. DOI: 10.1007/s00498-003-0128-6.
[31] I. K. Hanan,M.Z.Ahmad,F.S.Fadhel, andG.R.Mo hammed, (2018) “Backstepping in infinite dimensional for the time fractional order partial differential equations" Malaysian Journal of Fundamental and Applied Sciences 14(1): 83–89. DOI: 10.11113/MJFAS.V14N1.930.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.