Salim Dawood MohsenThis email address is being protected from spambots. You need JavaScript enabled to view it. and Ihsan Abdulsattar Awadh
Mustansiriyah University, College of Education, Department of mathematics, Baghdad, Iraq
Received: September 29, 2024 Accepted: April 4, 2025 Publication Date: April 24, 2025
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
This work begins by presenting the essential and enough circumstances for the presence of the Hermitian solution to equations ΨXΦ + Φ∗YΨ∗ = Ω = Ψ∗XΦ∗+ ΦYΨ in the case where the operators are linear and bounded in a Hilbert space and in terms of the Moore-Penrose inverse, and when both Ψ and Φ have closed ranges. After that, the general solution form of this system is studied based on the generalized inverse.
Keywords: adjoint operator; systems of operator equations; generalized inverse; Moore-Penrose generalized inverse; Hermitian solution; general solution.
[1] R.G.Douglas, (1966) “On majorization, factorization, and range inclusion of operators on Hilbert space" Proceedings of the American Mathematical Society 17(2): 413–415. DOI: 10.1090/S0002- 9939-1966 0203464-1.
[2] C. G. Khatri and S. K. Mitra, (1976) “Hermitian and nonnegative definite solutions of linear matrix equations" SIAM Journal on Applied Mathematics 31(4): 579 585. DOI: 10.1137/0131050.
[3] S. K. Mitra, (1990) “A pair of simultaneous linear matrix equations A1XB1= C1, A2XB2= C2 and a matrix programming problem" Linear Algebra and its Applica tions 131: 107–123. DOI: 10.1016/0024-3795(90)90377-O.
[4] J. Grosz, (1998) “A note on the general Hermitian solution to AXA∗ = B” Bulletin of the Malaysian Mathematical Sciences Society 21(2):
[5] A.Daji´ candJ.J.Koliha,(2007)“Positive solutions to the equations AX= C and XB= D for Hilbert space operators" Journal of Mathematical Analysis and Applications 333(2): 567–576. DOI: 10.1016/j.jmaa.2006.11.016.
[6] Q.Xu,(2008)“CommonHermitianandpositivesolutions to the adjointable operator equations AX= C, XB= D" linear algebra and its applications 429(1): 1–11. DOI: 10.1016/j.laa.2008.01.030.
[7] G. Xu, M. Wei, and D. Zheng, (1998) “On solutions of matrix equation AXB+ CYD= F" Linear Algebra and Its Applications 279(1-3): 93–109. DOI: 10.1016/S0024-3795(97)10099-4.
[8] A.Boussaid and F. Lombarkia, (2021) “HERIMITIAN SOLUTIONSTOTHEEQUATIONAXA∗+BYB∗ = C, FORHILBERTSPACEOPERATORS” Facta Universitatis, Series: Mathematics and Informatics 36(1): 1–14. DOI: 10.22190/FUMI191108001B.
[9] F. O. Farid, M. S. Moslehian, Q.-W. Wang, and Z.-C. Wu, (2012) “On the Hermitian solutions to a system of adjointable operator equations" Linear algebra and its applications 437(7): 1854–1891. DOI: 10.1016/j.laa. 2012.05.012.
[10] Z.-H. He and Q.-W. Wang, (2015) “The general solu tions to some systems of matrix equations" Linear and Multilinear Algebra 63(10): 2017–2032. DOI: 10.1080/03081087.2014.896361.
[11] Z. Mousavi, F. Mirzapour, and M. S. Moslehian, (2016) “Positive definite solutions of certain nonlinear matrix equations" Oper. Matrices 10(1): 113–126. DOI: 10.7153/oam-10-08.
[12] Q.-W.WangandC.-Z.Dong,(2010)“Positive solutions to a system of adjointable operator equations over Hilbert C∗−modules” Linear Algebra and Its Applications 433(7): 1481–1489. DOI: 10.1016/j.laa.2010.05.023.
[13] S. D. Mohsen, (2024) “On (n,D)- quasi operators" Iraqi Journal for Computer Science and Mathematics 5(1): 175–180. DOI: 10.52866/ijcsm.2024.05.01.013.
[14] S. D. Mohsen, (2023) “Some generalizations of fuzzy soft (kˆ–Â)-quasinormal operators in fuzzy soft Hilbert spaces" Journal of Interdisciplinary Mathematics 26(6): 1133–11343. DOI: 10.47974/JIM-1612.
[15] S. D. Mohsen, (2022) “Solvability of (λ, µ)-Commuting Operator Equations for Bounded Generalization of Hyponormal Operators" Iraqi Journal of Science 63(9): 3854–3860. DOI: 10.24996/ijs.2022.63.9.17.
[16] S. D. Mohsen, (2023) “On (k, m)-n-Paranormal Opera tors" Iraqi Journal of Science 64(6): 3087–3092. DOI: 10.24996/ijs.2023.64.6.36.
[17] S. D. Mohsen, (2024) “Novel Results of K Quasi ( λ− M)-hyponormal Operator" Iraqi Journal of Science 65(1): 374–380. DOI: 10.24996/ijs.2024.65.1.30.
[18] S. D. Mohsen, (2023) “New Generalizations for Hyponormal Operators" Iraqi Journal of Science 64(12): 6477–6482. DOI: 10.24996/ijs.2023.64.12.30.
[19] M.VosoughandM.S.Moslehian, (2017) “Solutions of the system of operator equations BXA = B = AXB via ∗ −order” Journal Linear Algebra 32: 172–183. DOI: 10.13001/1081-3810.3363.
[20] G. Che, G. Hai, J. Mei, and X. Cao, (2024) “The Existence and Representation of the Solutions to the System of Operator Equations AiXBi+ CiYDi+ EiZFi= Gi (i= 1, 2)" Axioms 13(7): 435. DOI: 10.3390/axioms13070435.
[21] L. Debnath and P. Mikusinski. Introduction to Hilbert spaces with applications. Academic press, 2005.
[22] T.Furuta. Invitation to linear operators: From matrices to bounded linear operators on a Hilbert space. CRC Press, 2001.
[23] E. Kreyszig. Introductory functional analysis with applications. 17. John Wiley & Sons, 1991.
[24] Q.Huang, L. Zhu, W. Geng, and J. Yu, (2012) “Perturbation and expression for inner inverses in Banach spaces and its applications" Linear algebra and its applica tions 436(9): 3721–3735. DOI: 10.1016/j.laa.2012.01.005.
[25] C.Y.DengandH.K.Du,(2010)“Representations of the Moore–Penrose inverse for a class of 2-by-2 block operator valued partial matrices" Linear and multilinear Alge bra 58(1): 15–26. DOI: 10.1080/03081080801980457.
[26] A. Ben-Israel and T. N. E. Greville. Generalized in verses: theory and applications. Springer Science & Busi ness Media, 2006.
[27] Q.XuandL.Sheng, (2008) “Positive semi-definite ma trices of adjointable operators on Hilbert C∗ − modules” Linear algebra and its applications 428(4): 992–1000. DOI: 10.1016/j.laa.2007.08.035.
[28] X.-M. Xu, H.-K. Du, X. Fang, and Y. Li, (2010) “The supremum of linear operators for the∗ − order” Linear algebra and its applications 433(11-12): 2198–2207. DOI: 10.1016/j.laa.2010.07.026.
[29] H. Wang, J. Huang, and M. Li, (2022) “On the solu tions of the operator equation XAX= BX" Linear and Multilinear Algebra 70(22): 7753–7761. DOI: 10.1080/03081087.2021.2007836.
[30] M.MohammadzadehKarizaki, M. Hassani, and D. Djordjevic, (2016) “The solutions to the operator equation TXS∗ −SX∗T∗ = AinHilbert C∗ modules" Interna tional Journal of Nonlinear Analysis and Applica tions 7(2): 127–132. DOI: 10.22075/ijnaa.2016.502.
[31] H. Stankovi´c, (2023) “Solvability of AiXBi = Ci,i = 1, 2, with applications to inequality C ≤ AXB" Ad vances in Operator Theory 8(2): 35. DOI: 10.1007/s43036-023-00265-x.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.