Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Che Wun Chiou This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Liuh Chii Lin1

1Department of Electronic Engineering Ching Yun University Chungli, Taiwan 320, R.O.C.


 

Received: July 15, 2003
Accepted: February 20, 2004
Publication Date: September 1, 2004

Download Citation: ||https://doi.org/10.6180/jase.2004.7.3.03  


ABSTRACT


The natural fault-tolerant properties and regular structure of the Lee-Lu-Lee’s array multiplier over GF(2m) fields make it very attractive for VLSI implementation. However, the Lee-Lu-Lee’s array multiplier is time-consuming while comparing with other existing array multipliers. Thus, we will present fast array multipliers with multiple speeds as comparing with the Lee-Lu-Lee’s array multiplier.


Keywords: Finite Fields Arithmetic, Modular Arithmetic, Public-key Cryptosystem, Array Multiplier, Elliptic Curve Cryptosystem.


REFERENCES


  1.  [1] MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland (1977).
  2. [2] Peterson, W. W. and Weldon, Jr., E. J., ErrorCorrecting Codes, 2nd ed. Cambridge, MA: MIT Press (1972).
  3. [3] Berlekamp, E. R., Algebraic Coding Theory, New York: McGraw-Hill (1968).
  4. [4] Lidl, R. and Niederreiter, H., Introduction to Finite Fields and Their Applications, New York: Cambridge Univ. Press (1994).
  5. [5] Application of Finite Fields, Menezes, A. J., ed. Boston: Kluwer Academic (1993).
  6. [6] Yeh, C. S., Reed, S. and Truong, T. K., “Systolic Multipliers for Finite Fields GF(2m),” IEEE Trans. Computers, Vol. 33, pp. 357360 (1984).
  7. [7] Massey, J. L. and Omura, J. K., “Computational Method and Apparatus for Finite Field Arithmetic,” U.S. Patent Number 4,587,627 (1986).
  8. [8] Itoh, T. and Tsujii, S., “Structure of Parallel Multipliers for a Class of Fields GF(2m),” Information and Computation, Vol. 83, pp. 2140 (1989).
  9. [9] Hasan, M. A., Wang, M. and Bhargava, V. K., “Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF(2m),” IEEE Trans. Computers, Vol. 41, pp. 962971 (1992).
  10. [10] Wu, H., Hasan, M. A. and Blake, I. F., “New Lowcomplexity Bit-parallel Finite Field Multipliers Using Eeakly Dual Bases,” IEEE Trans. Computers, Vol. 47, pp. 12231234 (1998).
  11. [11] Wu, H. and Hasan, M. A., “Low-complexity Bitparallel Multipliers for a Class of Finite Fields,” IEEE Trans. Computers, Vol. 47, pp. 883887 (1998).
  12. [12] Lee, C.-Y., Lu, E.-H. and Lee, J.-Y., “Bit-parallel Systolic Multipliers for GF(2m) Fields Defined by All-one and Equally Spaced Polynomials,” IEEE Trans. Computers, Vol. 50, pp. 385393 (2001).
  13. [13] Sunar, B. and Koç, C. K., “Mastrovito multiplier for all trinomials,” IEEE Trans. Computers, Vol. 48, pp. 522 527 (1999).
  14. [14] Wu, H., Hasan, M. A. and Blake, I. F., “On Complexity of Bit-parallel Finite Field Multiplier,” Proc. Canadian Workshop Information Theory’97 (1997).
  15. [15] Wu, H. “Bit-parallel Finite Field Multiplier and Square Using Polynomial Basis,” IEEE Trans. Computers, Vol.51, pp. 750758 (2002).
  16. [16] Chiou, C. W. “Concurrent Error Detection in Array Multipliers for GF(2m) Fields,” Electronics Letters, Vol. 38, pp. 688689 (2002).