REFERENCES
- [1] Kenning, D. B. R. and Yan, Y., “Pool Boiling Heat Transfer on a Thin Plate: Features Revealed by Liquid Crystal Thermo Graphy,” Int. J. Heat and Mass Transfer, Vol. 39, No. 15, pp. 31173137 (1996). doi: 10. 1016/0017-9310(96)00006-3
- [2] Judd, R. L. and Chopra, A., “Interaction of the Nucleation Processes Occurring at Adjacent Nucleation Sites,” ASME J. of Heat and Transfer, Vol. 115, No. 2, pp. 955962 (1993). doi: 10.1115/1.2911392
- [3] Dhir, V. K., “Numerical Simulations of Pool-Boiling Heat Transfer,” AIChE Journal, Vol. 47, No. 4, pp. 813834 (2001). doi: 10.1002/aic.690470407
- [4] Shoji, M. and Takagi, Y., “Bubbling Features from a Single Artificial Cavity,” Int. J. Heat and Mass Transfer, Vol. 44, No. 14, pp. 27632776 (2001). doi: 10. 1016/S0017-9310(00)00300-8
- [5] Zhang, L. and Shoji, M., “Nucleation Site Interaction in Pool Boiling on the Artificial Surface,” Int. J. Heat and Mass Transfer, Vol. 46, No. 3, pp. 513522 (2003). doi: 10.1016/S0017-9310(02)00291-0
- [6] Chatpun, S., Watanabe, M. and Shoji, M., “Nucleation Site Interaction in Pool Nucleate Boiling on a Heated Surface with Triple Artificial Cavities,” Int. J. Heat and Mass Transfer, Vol. 47, No. 14/16, pp. 3583 3587 (2004). doi: 10.1016/j.ijheatmasstransfer.2003. 11.035
- [7] Chatpun, S., Watanabe, M. and Shoji, M., “Experimental Study on Characteristics of Nucleate Pool Boiling by the Effects of Cavity Arrangement,” Experimental Thermal and Fluid Science, Vol. 29, No. 1, pp. 3340 (2004). doi: 10.1016/j.expthermflusci.2004.01.007
- [8] Sato, T., Koizumi, Y. and Ohtake, H., “Experimental Study on Fundamental Phenomena of Boiling Using Heat Transfer Surfaces with Well-Defined Cavities Created by MEMS (Effect of Spacing between Cavities),” Trans ASME J. of Heat Transfer, Vol. 30, No. 8, pp. 084501-1084501-4 (2008). doi: 10.1115/1.2927399
- [9] Sato, T., Koizumi, Y. and Ohtake, H., “Experimental Study on Nucleation Site Interaction During Pool Nucleate Boiling by Using Three Artificial Cavities,” ASME International Mechanical Engineering Congress and Exposition, CD-ROM, IMECE2008-68147 (2008). doi: 10.1115/IMECE2008-68147
- [10] Mikic, B. B. and Rohsenow, W. M., “A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics,” Journal of Heat Transfer, Vol. 91, pp. 245250 (1969). doi: 10.1115/1. 3580136
- [11] Das, A. K., Das, P. K. and Saha, P., “Heat Transfer During Pool Boiling Based on Evaporation from Micro and Macrolayer,” Int. J. Heat Mass Transfer, Vol. 49, pp. 34873499 (2006). doi: 10.1016/j.ijheat masstransfer.2006.02.050
- [12] Moghaddam, S. and Kiger, T. K., “Microscale Study of the Boiling Process in Low-Surface-Tension Fluids,” ASME IMECE, IMECE2006-16267, CD-R, (2006). doi: 10.1115/IMECE2006-16267
- [13] Kobayashi, Y., Toyokawa, S. and Araki, T., “Heat and Mass Transfer from Thin Liquid Film in the Vicinity of the Interline of Meniscus,” Thermal Science & Engineering, Vol. 2, No. 1, pp. 4551 (1994).
- [14] Hu, X. G., Zhao, Y. H., Yan, X. H. Tsuruta, T., “A Novel Micro Cooling System For Electronic Device by Using Micro Capillary Groove Evaporator,” Journal of Enhanced Heat Transfer, Vol. 11, No. 4, pp. 407 416 (2004). doi: 10.1615/JEnhHeatTransf.v11.i4.180
- [15] Labuntsov, D. A., “Current Theories of Nucleate Boiling of Liquids,” Heat Transfer-Soviet Research, Vol. 7, No. 3, pp. 114 (1975).
- [16] Zeng, L. Z., Klausner, J. F. and Mei, R., “A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems-I Pool Boiling,” Int. J. Heat Mass Transfer, Vol. 36, No. 9, pp. 22612270 (1993). doi: 10.1016/S0017-9310(05)80111-5
- [17] Zuber, N., “The Dynamics of Vapor Bubbles in Nonuniform Temperature Fields,” Int. J. Heat Mass Transfer, Vol. 2, pp. 8398 (1961). doi: 10.1016/0017-9310 (61)90016-3
- [18] Mei, R., Chen, W., James, F. and Klausner., “Vapor Bubble Growth in Heterogeneous Boiling-I Formulation,” Int. J. Heat Mass Transfer, Vol. 38, No. 5, pp. 909919 (1995). doi: 10.1016/0017-9310(94)00196-3
- [19] Zhao, Y. H., Masuoka, T. and Tsuruta, T., “Unified Theoretical Prediction of Fully Developed Nucleate Boiling and Critical Heat Flux Based on a Dynamic Microlayer Model,” Int. J. Heat Mass Transfer, Vol. 45, pp. 31893197 (2002). doi: 10.1016/S0017-9310 (02)00022-4
- [20] Thome, J. R., “Boiling in Micro Channels: a Review of Experiment and Theory,” Int. J. Heat Fluid Flow, Vol. 25, pp. 128139 (2004). doi: 10.1016/j.ijheatfluid flow.2003.11.005
- [21] Pan, K. L. and Chen, Z. J., “Simulation of Bubble Dynamics in a Microchannel Using a Front-Tracking Method,” Comput Mata Appl, Vol. 67, No. 2, pp. 290 306 (2014). doi: 10.1016/j.camwa.2013.05.001
- [22] Tsai, J. H. and Lin, L., “A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 665671 (2002). doi: 10.1109/JMEMS.2002.802909
- [23] Danniel, S., Chaudhury, M. K. and Chen, J. C., “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, pp. 633 636 (2001). doi: 10.1126/science.291.5504.633
- [24] Wasan, D. T., Nikolov, A. D. and Brenner, H., “Fluid Dynamics: Droplets Speeding on Surfaces,” Science, Vol. 291, pp. 605606 (2001). doi: 10.1126/science. 1058466
- [25] Lee, W. and Son, G., “Numerical Simulation of Bubble Growth and Heat Transfer During Flow Boiling in a Surface-Modified Microchannel,” Heat Transfer Eng, Vol. 35, No. 5, pp. 501507 (2014). doi: 10.1080/ 01457632.2013.833050
- [26] Talvy, C. A., Shemer, L. and Barnea, D., “On the Interaction between Two Consecutive Elongated Bubbles in a Vertical Pipe,” Int J Multiphas Flow, Vol. 26, pp. 19051923 (2000). doi: 10.1016/S0301-9322(00) 00004-5
- [27] Lauga, E. and Brenner, M. P., “Dynamic Mechanisms for Apparent Slip on Hydrophobic Surfaces,” Physical Review E, Vol. 70, pp. 02631110263117 (2004). doi: 10.1103/PhysRevE.70.026311
- [28] Ho, T. Y., Ou, S. F., Huang, S. H., Lee, C. N., Ger, L. P., Hsieh, K. S., Cheng, H. Y., Lee, W. Y. and Weng, K. P., “Effect of Flow Rate on Delivery of Bubble Continuous Positive Airway Pressure in an in Vitro Model,” Pediatr Neonatol, Vol. 51, No. 4, pp. 214 218 (2010). doi: 10.1016/S1875-9572(10)60041-1
- [29] Basaran, O. A., “Nonlinear Oscillations of Viscous Liquid Drops,” T. Fluid Mech, Vol. 241, pp. 169198 (1992). doi: 10.1017/S002211209200199X
- [30] Kandlikar, S. G., “Controlling Bubble Motion Over Heated Surface through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer,” Appl Phys Lett, Vol. 102, pp. 05161110516115 (2013). doi: 10. 1063/1.4791682
- [31] Wang, C. T., Leu, T. S. and Lai, T. M., “Micro Capillary Pump Loop System for a Cooling High Power Device,” Exp Therm Fluid Sci, Vol. 32, pp. 10901095 (2008). doi: 10.1016/j.expthermflusci.2008.01.001