Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Wenwen Lin This email address is being protected from spambots. You need JavaScript enabled to view it.1, Lei Wang1, Guangdong Tian2 and Yuejun Zhang1

1Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, P.R. China
2Transportation College, Jilin University, Changchun 130022, P.R. China


 

Received: December 12, 2017
Accepted: January 27, 2018
Publication Date: September 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201809_21(3).0004  

ABSTRACT


This paper presents a multi-objective evolutionary algorithm, which is called multi-course teaching-learning-based optimization algorithm. It consists of four phases: teacher, leaner, teacher training, and exchange student phases. Three novel modifications are introduced into the basic teaching-learning-based optimization algorithm. It helps diversify evolutionary population, enhance stochastic search ability, and avoid premature convergence. Eight widely used benchmark problems are employed in order to investigate the performance of the proposed algorithm. The experimental results indicate that it finds better Pareto optimal solutions than some other state-of-the-art algorithms for the majority of problems.


Keywords: Teaching-learning-based Optimization, Multi-objective Optimization, Evolutionary Algorithm, Heuristic Algorith


REFERENCES


  1. [1] Venkata Rao, R. and Patel, V., “Multi-objective Optimization of Heat Exchangers Using a Modified Teaching-learning-based Optimization Algorithm,” Applied Mathematical Modelling, Vol. 37, No. 3, pp. 1147 1162 (2012). doi: 10.1016/j.apm.2012.03.043
  2. [2] Pasupathy, T., Rajendran, C. and Suresh, R. K., “A Multi-objective Genetic Algorithm for Scheduling in Flow Shops to Minimizethe Makespan and Total Flow Time of Jobs,” The International Journal of Advanced Manufacturing Technology,Vol.27, No. 78, pp. 804 815 (2006). doi: 10.1007/s00170-004-2249-6
  3. [3] Jamshidi, R., Fatemi Ghomi, S. M. T. and Karimi, B., “Multi-objective Green Supply Chain Optimization with a New Hybrid Memetic Algorithm Using the Taguchi Method,” Scientia Iranica, Vol. 19, No. 6, pp. 18761886 (2012). doi: 10.1016/j.scient.2012.07.002
  4. [4] Horn, J., Nafpliotis, N. and Goldberg, D. E., “A Niched Pareto Genetic Algorithm for Multiobjective Optimization,” IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, USA, June 2729, Vol. 1, pp. 8287 (1994). doi: 10.1109/ICEC. 1994.350037
  5. [5] Zitzler, E. and Thiele, L., “Multiobjective Evolutionary Algorithms: a Comparative Case Study and the Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 257271 (1999). doi: 10.1109/4235.797969
  6. [6] Knowles, J. and Corne, D., “The Pareto Archived Evolution Strategy: a New Baseline Algorithm for Pareto Multiobjective Optimisation,” Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, July 69, Vol. 1, pp. 98105 (1999).
  7. [7] Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., “A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II,” Lecture Notes in Computer Science, Vol. 1917, No. 2000, pp. 849858 (2000). doi: 10.1007/3-540-45356-3_83
  8. [8] Zitzler,E.,Laumanns,M.,Thiele,L.,Zitzler,E.,Zitzler, E., Thiele, L. and Thiele, L., “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK) (2001). doi: 10.3929/ethz-a-004284029
  9. [9] Coello, C. A. C. C. and Pulido, G. T., “AMicro-genetic Algorithm for Multiobjective Optimization,” International Conference on Evolutionary Multi-Criterion Optimization, Zurich, Switzerland, Mar 7–9, pp. 126140 (2001).
  10. [10] Zhang, Q. and Li, H., “MOEA/D: a Multiobjective Evolutionary Algorithm Based on Decomposition,” Evolutionary Computation, IEEE Transactions on, Vol. 11, No. 6, pp. 712731 (2007).
  11. [11] Zhang, Q., Zhou, A. and Jin, Y., “RM-MEDA: a Regularity Model-based Multiobjective Estimation of Distribution Algorithm,”EvolutionaryComputation,IEEE Transactions on, Vol. 12, No. 1, pp. 4163 (2008). doi: 10.1109/TEVC.2007.892759
  12. [12] Huang, V. L., Zhao, S. Z., Mallipeddi, R., Suganthan, P. N. and Ieee, “Multi-objective Optimization Using Self-adaptive Differential Evolution Algorithm,” IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 1821, pp. 190194, (2009). doi: 10. 1109/CEC.2009.4982947
  13. [13] Atashpaz-Gargari, E. and Lucas, C., “Imperialist Competitive Algorithm: an Algorithm for Optimization Inspired by Imperialistic Competition,” IEEE Congress on Evolutionary Computation,Singapore, Sept.2528, pp. 46614667 (2007). doi: 10.1109/CEC.2007.4425083
  14. [14] Poli,R.,Kennedy,J.andBlackwell,T.,“Particle Swarm Optimization,” Swarm Intelligence, Vol. 1, No. 1, pp. 3357 (2007).
  15. [15] Karaboga, D. and Basturk, B., “A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm,” Journal of Global Optimization, Vol. 39, No. 3, pp. 459471 (2007). doi: 10.1007/s10898-007-9149-x
  16. [16] Rao, R., Savsani, V. and Vakharia, D., “Teaching-learning-based Optimization: an Optimization Method for Continuous Non-linear Large Scale Problems,” Information Sciences, Vol. 183, No. 1, pp. 115 (2012). doi: 10.1016/j.ins.2011.08.006
  17. [17] Hedayatzadeh, R., Hasanizadeh, B., Akbari, R. and Ziarati, K., “A Multi-objective Artificial Bee Colony for Optimizing Multi-objective Problems,” 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, Vol. 5, pp. V5-277V5-281. doi: 10.1109/ICACTE.2010. 5579761
  18. [18] Ali, H. and Khan, F. A., “Attributed Multi-objective Comprehensive Learning Particle Swarm Optimization for Optimal Security of Networks,” Applied Soft Computing, Vol. 13, No. 9, pp. 39033921 (2013). doi: 10. 1016/j.asoc.2013.04.015
  19. [19] Zou, F., Wang, L., Hei, X., Chen, D. and Wang, B., “Multi-objective Optimization Using Teaching-learning-based Optimization Algorithm,” Engineering Applications of Artificial Intelligence, Vol. 26, No. 4, pp. 12911300 (2013). doi: 10.1016/j.engappai.2012.11. 006
  20. [20] Wolpert, D. H. and Macready, W. G., “No Free Lunch Theorems for Optimization,” Evolutionary Computation, IEEE Transactions on, Vol. 1, No. 1, pp. 6782 (1997). doi: 10.1109/4235.585893
  21. [21] Rao, R., Savsani, V. and Vakharia, D., “Teaching–learning-based Optimization: a Novel Method for Constrained Mechanical Design Optimization Problems,” Computer-Aided Design, Vol. 43, No. 3, pp. 303315 (2011). doi: 10.1016/j.cad.2010.12.015
  22. [22] Satapathy, S. C. and Naik, A., “Data Clustering Based on Teaching-learning-based Optimization,”SEMCCO 2011: Swarm, Evolutionary, and Memetic Computing, pp. 148156: Springer (2011).
  23. [23] Venkata Rao, R. and Kalyankar, V., “Parameter Optimization of Modern Machining Processes Using Teaching–learning-based OptimizationAlgorithm,” Engineering Applications of Artificial Intelligence, Vol. 26, No. 1, pp. 524531 (2012). doi: 10.1016/j.engappai2012.06.007
  24. [24] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182197 (2002). doi: 10. 1109/4235.996017
  25. [25] Van Veldhuizen, D. A. and Lamont, G. B., “Evolutionary Computation and Convergence to a Pareto Front,” Late Breaking Papers at the Genetic Programming 1998 Conference, pp. 221228 (1998).
  26. [26] Schott, J. R., Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization,Master’s Desertation, Massachusetts Institute of Technology, Cambridge, USA. (1995).
  27. [27] Deb, K., Multi-objective Optimization Using Evolutionary Algorithms, Wiley (2001). [28] Coello, C. A. C., Lamont, G. B. and Van Veldhuisen, D. A., Evolutionary Algorithms for Solving Multi-objective Problems, Springer (2007).


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.