Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Shih-An Li1, Hsuan-Ming Feng This email address is being protected from spambots. You need JavaScript enabled to view it.2, Kung-Han Chen1, Jian-Ming Lin1 and Li-Hsiang Chou1

1Department of Electrical Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.
2Department of Computer Science and Information Engineering, National Quemoy University, Kinmen, Taiwan 892, R.O.C.


 

Received: October 25, 2017
Accepted: February 27, 2018
Publication Date: September 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201809_21(3).0006  

ABSTRACT


This paper applies a virtual robot operating system (ROS) platform to concurrently perform the automatic map generation and appropriate path planning for robot navigation applications. The powerful ROS works as a self-constructed robotic facility to perfectly achieve the maps generation and robot localization functions. LiDAR dynamically scanned the required information from the outsides environment and matched the visual maps for reaching the best path coverage and predicting the accurate robot location. ROS-based GAZEBO plant with the flexible and friendly interface is taken to simultaneously imitate the robot environment. In the illustrated experiments, an efficient A*algorithm is approved to build the near optimal routing path within one second executing time. Hector SLAM technology is employed to automatically generate the robot maps for completing nonlinear and complexed navigation applications.


Keywords: Robot Operating System, GAZEBO Simulator, A* Algorithm, LiDAR


REFERENCES


  1. [1] Kumar,N.,Vámossy,Z.andSzabó-Resch,Z.M.,“Robot Obstacle Avoidance Using Bumper Event,” Proc. of the 11th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2016), May 1214, Timioara, Romania, pp. 485489 (2016). doi: 10.1109/SACI.2016.7507426
  2. [2] Choi, H., Kim, E. and Yang, G.-W., “Scan Likelihood Evaluation in Fast SLAM Using Binary Bayes Filter,” Proc. of 2013 IEEE 11th IVMSP Workshop (2013). doi: 10.1109/IVMSPW.2013.6611891
  3. [3] Jasna,S.B.,Supriya,P.andNambiar,T.N.P,“Remodeled A* Algorithm for Mobile Robot Agents with ObstaclePositioning,” IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (2016). doi: 10.1109/ICCIC.2016.7919535
  4. [4] Wu,X.,Abrahantes,M.and Edgington,M.,“MUSSE: a Designed Multi-ultrasonic-sensor System for Echolocation on Multiple Robots,” Proc. of 2016 Asia-Pacific Conference on Intelligent Robot Systems, 2022 July (2016). doi: 10.1109/ACIRS.2016.7556192
  5. [5] Smith, R. C. and Cheeseman, P., “On the Representation and Estimation of Spatial Uncertainty,” International Journal of Robotics Research (1986). doi: 10. 1177/027836498600500404
  6. [6] Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B.,“Fastslam:aFactoredSolutiontotheSimultaneous Localization and Mapping Problem,” Proc. of 2002 Eighteenth National Conference on Artificial Intelligence, pp. 593–598 (2002).
  7. [7] Dissanayake,M.W.M.G.,Newman,P.,Durrant-Whyte, H., Clark, S. and Csorba, M., “An Experimental and Theoretical Investigation into Simultaneous Localization and Map Building,” Experimental Robotics VI, Vol. 250, Springer London, pp. 265274 (2000). doi: 10.1007/BFb0119405
  8. [8] Medina, S., Lancheros, P., Sanabria, L., Velasco, N. and Solaque, L., “Localizationand Mapping ApproximationforAutonomousGroundPlatforms,Implementing SLAM Algorithms,” 2014 III International Congress of Engineering Mechatronics and Automation (CIIMA), Oct., pp. 2224 (2014). doi: 10.1109/CIIMA. 2014.6983431
  9. [9] Balasuriya, B. L. E. A., Chathuranga, B. A. H., Jayasundara, B. H. M. D., Napagoda, N. R. A. C., Kumarawadu, S. P., Chandima, D. P. and Jayasekara, A. G. B. P., “Outdoor Robot Navigation Using G mapping Based SLAM Algorithm,”MoratuwaEngineering Research Conference (MERCon), Moratuwa, Sri Lanka, 56April(2016).doi:10.1109/MERCon.2016.7480175
  10. [10] Lepej, P. and Rakun, J., “Simultaneous Localisation and Mapping in a Complex Field Environment,” Biosystems Engineering, Vol. 150, pp. 160169 (2016). doi: 10.1016/j.biosystemseng.2016.08.004
  11. [11] Sileshi, B. G., Oliver, J., Toledo, R., Gonalves, J. and Costa, P., “On the Behaviour of Low Cost Laser Scanners in HW/SW Particle Filter SLAM Applications,” Robotics and Autonomous Systems,Vol.80,pp.1123 (2016). doi: 10.1016/j.robot.2016.03.002
  12. [12] He, Y. and Mei, Y., “An Efficient Registration Algorithm Based on Spin Image for LiDAR 3D Point Cloud Models,” Neurocomputing, Vol. 151, Part 1, pp. 354 363 (2015). doi: 10.1016/j.neucom.2014.09.029
  13. [13] Kohlbrecher, S., Meyer, J., von Stryk, O. and Klingauf, U., “AFlexible and Scalable SLAM System with Full 3DMotion Estimation,”2011 IEEEInternationalSymposiumonSafety,Security,andRescueRobotics(SSRR), pp.155160(2011).doi:10.1109/SSRR.2011.6106777
  14. [14] Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U. and von Stryk, O., “Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue Robots,” RoboCup 2013: Robot World Cup XVII, pp. 624631 (2014). doi: 10.1007/978-3662-44468-9_58
  15. [15] Hussein, M., Iagnemma, K. and Renner, M., “Global Localization of Autonomous Robots in Forest Environments,” Photogrammetric Engineering & Remote
    Sensing, Vol. 81, No. 11, pp. 839846 (2015). doi: 10. 14358/PERS.81.11.839
  16. [16] Guruji, A. K., Agarwal, H. and Parsediy, D. K., “Time efficient A*Algorithm for Robot Path Planning,” Procedia Technology, Vol. 23, pp. 144–149 (2016). doi: 10.1016/j.protcy.2016.03.010
  17. [17] Goto, T., Kosaka, T. and Noborio, H., “On the Heuristics of A* or a Algorithm in ITS and Robot Path planning,”Proc. of 2003 IEEWRSJ International Conference on IntelligentRobots and Systems,Las Vegas, Nevada, pp. 11591166 (2003). doi: 10.1109/IROS. 2003.1248802
  18. [18] Koenig, N. and, Howard, A., “Design and Use Paradigms for Gazebo, an Open-source Multi-robot Simulator,” Proc. of 2004 IEEE International Conference on Robotics and Automation (ICRA), pp. 2149–2154 (2004). doi: 10.1109/ROBOT.2004.1302377
  19. [19] Trivun, D., Šalaka, E. and Osmankovi, D., “Active SLAM-based Algorithm for Autonomous Exploration withMobileRobot,” Proc. of 2015 IEEEInternational Conference on Industrial Technology (ICIT) (2015). doi: 10.1109/ICIT.2015.7125079
  20. [20] Nguyen, H. K. and Wongsaisuwan, M., “A Study on Unscented SLAM with Path Planning Algorithm Integration,” Proc. of 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), 1417 May (2014). doi: 10.1109/ECTICon. 2014.6839824
  21. [21] Leddisaravi, K., Alitappeh, R. 1. and Guimari'ies, F. G., “Multi-objective Mobile Robot Path Planning Based on A* Search,” Proc. of 6th International Conference on Computer and Knowledge Engineering (ICCKE 2016), October 2021, 2016, FerdowsiUniversityof Mashhad. pp.712(2016).doi:10.1109/ICCKE.2016.7802107
  22. [22] Ueland,E.S.,Skjetne,R.andAndreas,R.D.,“Marine Autonomous Exploration Using a Lidar and SLAM,” Proc. of 36th International Conference on Ocean,Offshore and Arctic Engineering (ASME 2017), Vol. 6 (2017).
  23. [23] Huang, W. H., Design of Mapping and Exploration System with ROS, M.S. Desertation, TamkangUniversity, Taiwan (2016).


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.