REFERENCES
- [1] Kuppusamy, N. R, R. Saidur, N. N. N. Ghazali, and H. A. Mohammed (2014) Numerical study of thermal enhancement in micro channel heat sink with secondary flow, Int J. Heat Mass Transfer 78, 216223. doi: 10. 1016/j.ijheatmasstransfer.2014.06.072
- [2] Mei, D., X. Lou, M. Qian, Z. Yao, L. Liang, and Z. Chen (2014) Effect of tip clearance on heat transfer and pressure drop performance in the microreactor with micro-pin-fin arrays at low reynolds number, Int. J. Heat and Mass Transfer 70, 709718. doi: 10.1016/ j.ijheatmasstransfer.2013.11.060
- [3] Lee, Y. J., P. K. Sing, and P. S. Lee (2015) Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study, Int. J. Heat and Mass Transfer 81, 325336. doi: 10.1016/j.ijheatmasstransfer.2014.10.018
- [4] Abdoli, A., G. Jimenez, and G. S. Dulikravich (2015) Thermofluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot, Int. J. of Thermal Sciences 90, 290297. doi: 10.1016/j. ijthermalsci.2014.12.021
- [5] Wang, Y., A. Nayebzadeh, X. Yu, J. Shin, and Y. Peles (2017) Local heat transfer in a microchannelwith a pin fin-experimental issues and methods to mitigate, Heat and Mass Transfer 106, 11911204. doi: 10.1016/j. ijheatmasstransfer.2016.10.100
- [6] Yu, X., C. Woodcock, J. Plawsky, and Y. Peles (2016) An investigation of convective heat transfer in a microchannel with piranha pin fin, Int. J of Heat Mass Transfer 103, 11251132. doi: 10.1016/j. ijheatmasstransfer.2016.07.069
- [7] Yadav, V., K. Baghel, R. Kumar, and S. T. Kadam (2016) Numerical investigation of heat transfer in extended surface microchannels, Int J. Heat Mass Transfer 93, 612622. doi: 10.1016/j.ijheatmasstransfer. 2015.10.023
- [8] Duangthongsuk, W., and S. Wongwises (2015) An experimental study on the thermal and hydraulic performances of nanofluid flow in a miniature circular pin heat sink, Experimental Thermal and Fluid Science 66, 2835. doi:10.1016/j.expthermflusci.2015.02.008
- [9] Gunda, N. S. K., J. Joseph, A. Tamayol, M. Akbari, and S. K. Mitra (2013) Measurement of pressure drop and flow resistance in microchannels with integrated micropillars, Microfluid Nanofluid 14, 711721. doi: 10.1007/s10404-012-1089-1
- [10] Yang, D., Y. Wang, G. Ding, Z. Jin, J. Zhao, and G. Wang (2017) Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations, Applied Thermal Engineering 112, 15471556. doi: 10.1016/j.applthermaleng.2016.08.211
- [11] Law, M., O. B. Kanargi, and P. Lee (2016) Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels, Int. J. of Heat and Mass Transfer 100, 646660. doi: 10.1016/j.ijheatmasstransfer.2016.04.077
- [12] Hua, J., G. Li, X. Zhao, Q. Li, and J. Hu (2016) Study on the flow resistance performance of fluid cross various shapes of microscale pin fin, Applied Thermal Engineering 107, 768775. doi: 10.1016/j. applthermaleng.2016.07.048
- [13] Zhao, J., S. Huang, L. Gong, and Z. Huang (2016) Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling, Applied Thermal Engineering 93, 13471359. doi: 10.1016/j. applthermaleng.2015.08.105
- [14] Razavi, S. E., B. Osanloo, and R. Sajedi (2015) Application of splitter plate on the modification of hydrothermal behavior of PPFHS, Applied Thermal Engineering 80, 97108. doi: 10.1016/j.applthermaleng. 2015.01.046
- [15] Gong, L., J. Zhao, and S. Huang (2015) Numerical study on layout of microchannel heat sink for thermal management of electronic devices, Applied Thermal Engineering 88, 480490. doi: 10.1016/j. applthermaleng.2014.09.048
- [16] Escher, W., B. Michel, and D. Poulikakos (2009) Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics, Int. J. of Heat and Mass Transfer 52, 14211430. doi: 10.1016/j.ijheatmasstransfer.2008.07.048
- [17] Kandlikar, S. G. (2005) High flux heat removal with microchannels - a roadmap of challenges and opportinities, Heat Transfer Engineering 26(8), 514. doi: 10.1080/01457630591003655
- [18] Shafeie, H., O. Abouali, K. Jafarpur, and G. Ahmadi (2013) Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures, Applied Thermal Engineering 58, 6876. doi: 10. 1016/j.applthermaleng.2013.04.008
- [19] Arbabi,F.,R.Roshandel,andG.K.Moghaddam(2012) Numerical modelling of an innovative bipolar plate design based on the leaf venation patterns for PEM fuel cells, IJE Transactions C: Aspects 25, 177186. doi: 10.5829/idosi.ije.2012.25.03c.01
- [20] Roshandel,R.,F.Arbabi,andG.K.Moghaddam(2012) Simulationof aninnovative flow-field design basedon bio inspired pattern for PEM fuel cells, Renewable Energy 41, 8695. doi: 10.1016/j.renene.2011.10.008
- [21] Camburn, B., K. Otto, D. Jensen, R. Crawford, and K. Wood (2015) Designing biologically inspired leaf structures: computational geometric transport analysis of volume – to point flow channels, Engineering with Computers 31, 361374. doi: 10.1007/s00366-0140356-z
- [22] Arvay, A., J. French, J. C. Wang, X. H. Peng, and A. M Kannan (2013) Nature inspired flow field designs for proton exchange membrane fuel cell, Int. J. Hydrogen Energy 38, 37173726. doi: 10.1016/j.ijhydene.2012. 12.149
- [23] Guo, N., M. C. Leu, and U. O. Koylu (2014) Bio-inspired flow field designs for polymer electrolyte membrane fuel cells, Int. J Hydrogen Energy 39, 21185 21195. doi: 10.1016/j.ijhydene.2014.10.069
- [24] Currie, J. M. (2010) Biomimetic Design Applied to the Redesign of a PEM Fuel Cell Flow Field, M.A.Sc. Thesis, University of Toronto.
- [25] Kloess, J. P., X. Wang, J. Liu, Z. Shi, and L. Guessous (2009) Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells, J. Power Sources 188, 132140. doi: 10. 1016/j.jpowsour.2008.11.123
- [26] Faezaneh, M., M. R. Salimpour, and M. R. Tavakoli (2016) Design of bifurcating microchannels with/without loops for cooling of square-shaped electronics, Applied Thermal Engg 108, 581595. doi: 10.1016/j. applthermaleng.2016.07.099
- [27] Chen, T., Y. Xiao, and T. Chen (2012) The impact onPEMFC of bionic flow field with a different branch, Energy Procedia 28, 134139. doi: 10.1016/j.egypro. 2012.08.047
- [28] COMSOL user’s manual (2016) www.comsol.com.
- [29] Tuckerman, D. B., and R. F. W. Pease (1981) Highperformance heat sinking for VLSI, IEEE Electron. Lett, EDL 2, 126129. doi: 10.1109/EDL.1981.25367
- [30] Qu, W., and I. Mudawar (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink, Int. J. of Heat and Mass Transfer 45, 25492565. doi: 10.1016/ S0017-9310(01)00337-4
- [31] Fedorov, A. G., and R. Viskanta (2000) Three-dimensional conjugate heat transfer in the microchannel heat sink for electronics packaging, Int. J. of Heatand Mass Transfer 43, 399415. doi: 10.1016/S0017-9310(99) 00151-9
- [32] Zhao, C. Y., and T. J. Lu (2002) Analysis of microchannel heat sinks for electronics cooling, Int. J. of Heat and Mass Transfer 45, 48574869. doi: 10.1016/ S0017-9310(02)00180-1
- [33] Chen, C. H. (2007) Forced convection heat transfer in microchannel heat sinks, Int. J. of Heat and Mass Transfer 50, 21822189. doi: 10.1016/j.ijheatmasstransfer. 2006.11.001