Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Syed Maaz Hasan1, MuhammadSaadUlHaq2, Abdul Waheed Badar3This email address is being protected from spambots. You need JavaScript enabled to view it., M Zahid Iqbal Qureshi4, Majid Ali2, and M. Salman Siddiqi5

1Department of Mechanical Engineering, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan

2U.S. Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, H-12 Islamabad

3Mechanical Engineering Department, College of Engineering, University of Bahrain, Kingdom of Bahrain

4Department of Mechanical Engineering, University of Wah, Quaid Avenue, Wah Cantt, Pakistan

5Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Norway


 

 

Received: August 23, 2023
Accepted: November 5, 2024
Publication Date: December 9, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202509_28(9).0007  


In industrialized cooling systems, LiBr − H2O is widely utilized as the predominant working fluid, particularly in absorption systems for maintaining the thermal comfort of building occupants. There is a pressing need for more energy-efficient alternatives due to the significant stride in energy consumption by HVAC systems. In this research performance characteristics of 2.5 kW air-cooled Lithium Bromide Water absorption cooling system were examined by modeling the system based on the first and second law of thermodynamics. Sensitivity analyses of the key performance indicators were performed using decision tree, a prevalent machine learning algorithm, by computing importance by keeping one factor constant while varying the other e.g. generator temperature was kept constant while the concentration of the LiBr solution was varied. Exergetic efficiency was increased by 7.95% as the generator temperature increased from 90 to 135C. It was also observed that a significant portion of exergy losses occur in the generator and the absorption process. Improvement and reallocation strategies have been discussed in the conclusion.


Keywords: ***


  1. [1] A.M.Omer,(2008) “Energy, environment and sustain able development" Renewable and Sustainable En ergy Reviews 12(9): 2265–2300. DOI: 10.1016/j.rser.2007.05.001.
  2. [2] B. Bandyopadhyay and M. Banerjee, (2022) “Decar bonization of cooling of buildings" Solar Compass 2: 100025. DOI: 10.1016/j.solcom.2022.100025.
  3. [3] F. Papanelopoulou, (2009) “The international asso ciation of refrigeration through the correspondence of Heike Kamerlingh Onnes and Charles-Edouard Guil laume, 1908-1914" Annals of Science 66(3): 345–370. DOI: 10.1080/00033790902976189.
  4. [4] B.Kuang, Z. Liu, Y. Shi, and J. Chen. “Characteristics and Influencing Factors of HVAC Energy Consump tion in US Residential Buildings”. In: Construction Research Congress 2024. 2024, 106–116.
  5. [5] H. G. Berhane, G. G. Gonzalo, J. Laureano, and B. Dieter, (2010) “A systematic tool for the minimization of the life cycle impact of solar-assisted absorption cooling systems" Energy 35(9): 3849–3862. DOI: 10.1016/j.energy.2010.05.039.
  6. [6] L. Pérez-Lombard, J. Ortiz, and C. Pout, (2008) “A review on buildings energy consumption information" Energy and Buildings 40(3): 394–398. DOI: 10.1016/j.enbuild.2007.03.007.
  7. [7] A. Shirazi, R. A. Taylor, G. L. Morrison, and S. D. White, (2018) “Solar-powered absorption chillers: A com prehensive and critical review" Energy Conversion and Management: DOI: 10.1016/j.enconman.2018.05.091.
  8. [8] N. E. Wijeysundera, (1995) “Analysis of the ideal ab sorption cycle with external heat-transfer irreversibilities" Energy 20(2): 123–130. DOI: 10.1016/0360-5442(94)00061-7.
  9. [9] J. Chen, (1995) “The equivalent cycle system of an en doreversible absorption refrigerator and its general perfor mance characteristics" Energy 20(10): 995–1003. DOI: 10.1016/0360-5442(95)00054-K.
  10. [10] M. Mostafavi and B. Agnew, (1996) “The impact of ambient temperature on lithium-bromide/water absorption machine performance" Applied Thermal Engineering 16(6): 515–522. DOI: 10.1016/1359-4311(95)00004-6.
  11. [11] F. Calise, (2012) “High temperature solar heating and cooling systems for different Mediterranean climates: Dy namic simulation and economic assessment" Applied Thermal Engineering 32(1): 108–124. DOI: 10.1016/j.applthermaleng.2011.08.037.
  12. [12] D. Chemisana, J. López-Villada, A. Coronas, J. I. Rosell, and C. Lodi, (2013) “Building integration of concentrating systems for solar cooling applications" Ap plied Thermal Engineering 50(2): 1472–1479. DOI: 10.1016/j.applthermaleng.2011.12.005.
  13. [13] Y. Hang, M. Qu, R. Winston, L. Jiang, B. Widyolar, and H. Poiry, (2014) “Experimental based energy perfor mance analysis and life cycle assessment for solar absorp tion cooling system at University of California, Merced" Energy and Buildings 82: 746–757. DOI: 10.1016/j.enbuild.2014.07.078.
  14. [14] M.NoroandR.M.Lazzarin, (2014) “Solar cooling be tween thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions" En ergy 73: 453–464. DOI: 10.1016/j.energy.2014.06.035.
  15. [15] C. Vasilescu and C. Infante Ferreira, (2014) “Solar driven double-effect absorption cycles for sub-zero tem peratures" International Journal of Refrigeration 39: 86–94. DOI: 10.1016/j.ijrefrig.2013.09.034.
  16. [16] A.Buonomano,F.Calise,D.D’Agostino, A. Palombo, and L. Vanoli, (2016) “Experimental analysis and dy namic simulation of a novel high-temperature solar cool ing system" Energy Conversion and Management 109: 19–39. DOI: 10.1016/j.enconman.2015.11.047.
  17. [17] A. S. Canbolat, A. H. Bademlioglu, N. Arslanoglu, and O. Kaynakli, (2019) “Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods" Journal of Cleaner Production 229: 874–885. DOI: 10.1016/j.jclepro.2019.05.020.
  18. [18] C. Wu, X. Xu, Q. Li, X. Li, L. Liu, and C. Liu, (2021) “Performance assessment and optimization of a novel geothermal combined cooling and power system integrat ing an organic flash cycle with an ammonia-water absorp tion refrigeration cycle" Energy Conversion and Man agement 227: DOI: 10.1016/j.enconman.2020.113562.
  19. [19] M. Hassan, I. I. El-Sharkawy, and K. Harby, (2023) “Study of an innovative combined absorption-adsorption cooling system employing the same evaporator and con denser" Case Studies in Thermal Engineering 42: DOI: 10.1016/j.csite.2022.102690.
  20. [20] A. Z. Mendiburu, J. J. Roberts, L. J. Rodrigues, and S. K. Verma, (2023) “Thermodynamic modelling for ab sorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil" Energy 266: DOI: 10.1016/j.energy.2022.126457.
  21. [21] M. B. Younes, Y. Altork, and N. A. Shaban, (2024) “Performance Evaluation of a Small Scale Ammonia-Water Absorption Cooling System for Off-Grid Rural Homes: A Numerical and Experimental Study" International Journal of Heat and Technology 42(1): 90–100. DOI: 10.18280/ijht.420110.
  22. [22] C. Monné, S. Alonso, F. Palacín, and J. Guallar, (2011) “Stationary analysis of a solar LiBr-H2O absorption refrig eration system" International Journal of Refrigera tion 34(2): 518–526. DOI: 10.1016/j.ijrefrig.2010.11.009.
  23. [23] C. Monné, S. Alonso, F. Palacín, and L. Serra, (2011) “Monitoring and simulation of an existing solar powered absorption cooling system in Zaragoza (Spain)" Applied Thermal Engineering 31(1): 28–35. DOI: 10.1016/j.applthermaleng.2010.08.002.
  24. [24] M.N.Ili´c, V. P. Stefanovi´c, D. Brega, D. S. Živkovi´c, and S. R. Pavlovi´ c, (2023) “Experimental and numerical investigation of driving potential of biomass-pellet hot air generator for coupling with absorption heat pump" Thermal Science 27(5): 3659–3673. DOI: 10.2298/TSCI221103068I.
  25. [25] E. Bellos, I. Chatzovoulos, and C. Tzivanidis, (2021) “Yearly investigation of a solar-driven absorption refrigera tion system with ammonia-water absorption pair" Ther mal Science and Engineering Progress 23: DOI: 10.1016/j.tsep.2021.100885.
  26. [26] K. A. Joudi and A. H. Lafta, (2001) “Simulation of a simple absorption refrigeration system" Energy conver sion and Management 42(13): 1575–1605.
  27. [27] R. D. Misra, P. K. Sahoo, and A. Gupta, (2005) “Ther moeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system" In ternational Journal of Refrigeration 28(3): 331–343. DOI: 10.1016/j.ijrefrig.2004.09.006.
  28. [28] A.A.Bashir, J. Jokisalo, J. Heljo, A. Safdarian, and M. Lehtonen, (2021) “Harnessing the flexibility of district heating system for integrating extensive share of renew able energy sources in energy systems" IEEE Access 9: 116407–116426. DOI: 10.1109/ACCESS.2021.3105829.
  29. [29] A.B.GündüzAltiokka and O. Arslan, (2023) “Design and optimization of absorption cooling system operating under low solar radiation for residential use" Journal of Building Engineering 73: DOI: 10.1016/j.jobe.2023.106697.
  30. [30] S. Manu and T. K. Chandrashekar, (2016) “A simu lation study on performance evaluation of single-stage LiBr–H2O vapor absorption heat pump for chip cooling" International Journal of Sustainable Built Environ ment 5(2): 370–386. DOI: 10.1016/j.ijsbe.2016.08.002.
  31. [31] A. Alahmer and S. Ajib, (2020) “Solar cooling tech nologies: State of art and perspectives" Energy Conver sion and Management 214: 112896. DOI: 10.1016/j. enconman.2020.112896.
  32. [32] S. Aprhornratana and I. W. Eames, (1995) “Thermody namic analysis of absorption refrigeration cycles using the second law of thermodynamics method" International Journal of Refrigeration-revue Internationale Du Froid 18: 244–252. DOI: 10.1016/0140-7007(95)00007-X.
  33. [33] A. Bejan, (2002) “Fundamentals of exergy analysis, en tropy generation minimization, and the generation of f low architecture" International journal of energy re search 26(7):
  34. [34] R. Gomri and R. Hakimi, (2008) “Second law anal ysis of double effect vapour absorption cooler system" Energy Conversion and Management 49(11): 3343 3348. DOI: 10.1016/j.enconman.2007.09.033.
  35. [35] T. Hastie, R. Tibshirani, and J. Friedman. The Ele ments of Statistical Learning. Springer Series in Statis tics. New York, NY: Springer, 2009. DOI: 10.1007/978-0-387-84858-7.
  36. [36] M. Kavgic, D. Mumovic, A. J. Summerfield, Z. Ste vanovic, and E.-Ð. Olivera, (2013) “Uncertainty and modeling energy consumption: Sensitivity analysis for a city-scale domestic energy model" Energy and Build ings 60: 1–11. DOI: 10.1016/j.enbuild.2013.01.005.


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.