REFERENCES
- [1]Eringen A.C. (1990), “Theory of thermo microstretch elastic solids”. International Journal of Engineering Science, 28 (12), pp. 1291–1301. DOI: 1016/0020-7225(90)90076-U
- [2]Bofill F. and Quintanilla R. (1995), “Some qualitative results for the linear theory of thermo-microstretch elastic solids”. International Journal of Engineering Sciences, 33, pp. 2115-2125. DOI: 1016/0020-7225(95)00048-3
- [3]Singh B., Kumar R., (1998) “Wave propagation in a generalized thermo-microstretch elastic solid”, International Journal of Engineering Sciences, 36, pp. 891-912. DOI: 1016/S0020-7225(97)00099-2
- [4]Atwa S.Y., “Generalized magneto-thermoelasticity with two-temperatures and initial stress under Green Naghdi theory”, Applied Mathematical Modeling, 38, pp. 5217-5230, 2014. DOI: 1016/j.apm.2014.04.023
- [5]Al-Lehaibi (2016), “Two temperature generalized thermoelasticity without energy dissipation of infinite medium with spherical cavity thermally excited by time exponentially decaying laser pulse”. Modeling and numerical simulation of Material Sciences, 5, pp. 55-62.
- [6]Kumar, R., Kumar, A. and Singh, D. (2015), “Thermo-mechanical Interactions due to Laser Pulse in Microstretch Thermoelastic Medium”, Archives of Mechanics, 67 (6), pp. 439-456.
- [7]Marin M., Vlase S., “Effect of internal state variables in thermoelasticity of microstretch bodies”,The Journal of "Ovidius" University of Constanta, 24 (3), pp. 241-257, 2016. DOI: 1515/auom-2016-0057
- [8]Kumar A., “Elastodynamic Effects of Hall Current with Rotation ina Microstretch Thermoelastic Solid”,Journal of Applied Science and Engineering, 20 (3), pp. 345-354, 2017. DOI: 6180/jase.2017.20.3.09
- [9]Kumar, R., Kumar, A. and Singh, D. (2018), “Elastodynamic interactions of Laser Pulse in Microstretch Thermoelastic Mass Diffusion Medium with Dual Phase Lag”, Microsystem Technologies, 24, pp. 1875-1884. DOI: 1007/s00542-017-3568-5
- [10]Chen P.J., Gurtin M.E., “On a theory of heat conduction involving two temperatures”,Zeitschrift für angewandte Mathematik und Physik ZAMP, 19 (4), pp. 614-627, 1968. DOI: 1007/BF01594969
- [11]Youssef H. M., “Theory of two-temperature-generalized thermoelasticity”, IMA Journal of Applied Mathematics, 71(3), pp. 383-390, 2013.
- [12]Youssef, H.M. and Bassiouny, E., “Two temperature generalized thermopiezoelasticity for one dimensional problem using state space approach,” Computational Methods in Science and Technology, vol. 14, pp. 155–164, 2008. DOI: 12921/cmst.2008.14.01.55-64
- [13]A. Ezzat and A. A. Bary, “State space approach of twotemperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity”, International Journal of Engineering Science, vol. 47, no. 4, pp. 618–630, 2009. DOI: 10.1016/j.ijengsci.2008.12.012
- [14]Kumar R., Mukhopadhyay S., “Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity”, Journal of Thermal Stresses, 32 (4), pp. 341-360, 2009. DOI: 1080/01495730802637183
- [15]Youssef, H.M. and Elsibai K.A., “On the theory of two-temperature thermoelasticity without energy dissipation of Green–Naghdi model”, Applicable Analysis 94(10), pp.1997-2010, 2015. DOI: 1080/00036811.2014.961920
- [16]A. Ezzat, El-Karamany, and S. M. Ezzat, “Two-temperature theory in magneto-thermoelasticity with fractional order dual phase-lag heat transfer”, Nuclear Engineering and Design, vol. 252, pp. 267–277, 2012. DOI: 10.1016/j.nucengdes.2012.06.012
- [17]M. Youssef, “Variational principal of two temperature thermoelasticity without energy dissipation”, Journal of Thermoelasticity, vol. 1, pp. 42–44, 2013.
- [18]Al-Lehaibi, Eman A.N., “Vibration of Two-Temperature Thermoelastic Nano Beam without Energy Dissipation”, Journal of computational and theoretical nanoscience, 13 (7), pp. 4056-4063, 2016. DOI: 1166/jctn.2016.5251
- [19]Deswal S., Sheoran S.S., Kalkal K.K. (2013), “A two temperature problem in magneto thermoelasticity with laser pulse under different boundary conditions”, Journal of Mechanics of Materials and Structures, 8 (8), pp. 441-457. DOI: 2140/jomms.2013.8.441
- [20]Sur A, Kanoria M., “Three-dimensional thermoelastic problem under two-temperature theory, International Journal of computational methods“, vol. 14, no. 3, 1750030, 2017. DOI: 1142/S021987621750030X
- [21]I.A. Othman, S.M. Said, “Effect of diffusion and internal heat source on a two-temperature thermoelastic medium with three-phase-lag model“, Archives of thermodynamics, 39 (2), pp. 15-39, 2018.
- [22]Kumar A., Kumar R., Abo-Dahab, S. M. “Mathematical model for Rayleigh waves in microstretch thermoelastic medium with microtemperatures“, Journal of Applied Science and Engineering, 20(2), pp. 149-156, 2017.
- [23]Atwa S.Y., Jahangir A., “Two-temperature effects on plane waves in generalized thermo-microstretch elastic solid“, International Journal of Thermophysics,35, pp.175-193, 2014. Doi:10.1007/s10765-013-1541-9
- [24]Dhaliwal R.S., Singh, A. (1980), “Dynamic Coupled Thermoelasticity. Hindustan Publication Corporation, New Delhi.
- [25]Ailawalia P., Sachdeva S.K., Pathania D., “Two dimensional deformation in microstretch thermoelastic half space with microtemperatures and internal heat source”, Cogent Mathematics, 2 (1), 2015.